Advertisement

Journal of Applied Electrochemistry

, Volume 49, Issue 5, pp 465–474 | Cite as

Crystal chemistry and lithium-ion intercalation properties of lithium manganese silicate cathode for aqueous rechargeable Li-ion batteries

  • Miranda M. NdipingwiEmail author
  • Chinwe O. Ikpo
  • Ntuthuko W. Hlongwa
  • Nomxolisi Dywili
  • Anne Lutgarde Djoumessi Yonkeu
  • Emmanuel I. Iwuoha
Research Article
  • 85 Downloads
Part of the following topical collections:
  1. Batteries

Abstract

Lithium manganese silicate (Li2MnSiO4) demonstrates rich polymorphism with orthorhombic Pmn21 polymorph having better crystalline ordering over orthorhombic Pmnb and monoclinic forms. In this work, Li2MnSiO4 nanoparticles with the Pmn21 phase were synthesized by hydrothermal synthesis. Powder X-ray diffraction, HRSEM, and HRTEM as well as SAXS investigations revealed crystalline, spherical nanoparticles with average diameters between 14 and 25 nm. The binding energy of surface active Mn2+ ions in Li2MnSiO4 was observed at 642.9 eV in XPS analysis. SSNMR spectroscopic results revealed isotropic peaks at − 288.5 and 295.32 ppm which are attributed to the hyperfine coupling between the Li nuclei and the unpaired electrons of the Mn2+ ions. The electrochemical properties of Li2MnSiO4 electrode were studied in various 1 M LiX (X = SO42−, NO3 and ClO4) aqueous electrolytes at a potential window of 0.2–1 V. Studies in the Li2SO4 aqueous electrolyte demonstrated better electrochemical properties with increasing peak current values up till the 2000th cycle. Charge and discharge capacities of 77.0 and 57.7 mAh g−1 were obtained at a scan rate of 5 mV s−1 with a Li-ion diffusion coefficient of 1.61 × 10−16 cm2 s−2. A small charge transfer resistance in the Li2SO4 electrolyte was also observed in EIS measurements indicating faster charge transfer kinetics. An aqueous Li-ion Swagelok-type full cell was assembled with microcrystalline graphite as anode and Li2MnSiO4 as the cathode. 1 M Li2SO4 was used as the electrolyte. The cell delivered a charge capacity of 61.8 mAh g−1 and a discharge capacity of 52.5 mAh g−1 at a current load of 1.2 A g−1 with good capacity retention of 94.0% and a Coulombic efficiency of 99.5% over 3300 cycles.

Graphical abstract

SEM image, FTIR, XPS, and discharge capacity versus coulombic efficiency plots of Li2MnSiO4 nanoparticles

Keywords

Crystal chemistry Li2MnSiO4 Li-ion intercalation Aqueous Li-ion batteries 

Notes

Acknowledgements

This research work was financially supported by the University of the Western Cape and the National Research Foundation (NRF) of South Africa.

References

  1. 1.
    Liu J, Wang J, Ku Z, Wang H, Chen S, Zhang L et al (2016) Aqueous rechargeable alkaline CoxNi2–xS2/TiO2 battery. ACS Nano 10:1007–1016CrossRefGoogle Scholar
  2. 2.
    Zeng X, Liu Q, Chen M, Leng L, Shu T, Du L et al (2014) Electrochemical behavior of spherical LiFePO4/C nanomaterial in aqueous electrolyte, and novel aqueous rechargeable lithium battery with LiFePO4/C anode. Electrochim Acta 177:277–282CrossRefGoogle Scholar
  3. 3.
    Ruffo R, La Mantia F, Wessells C, Huggins RA, Cui Y (2011) Electrochemical characterization of LiCoO2 as rechargeable electrode in aqueous LiNO3 electrolyte. Solid State Ion 192:289–292CrossRefGoogle Scholar
  4. 4.
    Cvjeticanin N, Stojkovic I, Mitric M, Mentus S (2007) Cyclic voltammetry of LiCr0.15Mn1.85O4 in an aqueous LiNO3 solution. J Power Sources 174:1117–1120CrossRefGoogle Scholar
  5. 5.
    Liu J, Yi L, Liu L, Peng P (2014) LiV3O8 nanowires with excellent stability for aqueous rechargeable lithium batteries. Mater Chem Phys 161:211–218CrossRefGoogle Scholar
  6. 6.
    Suo L, Borodin O, Sun W, Fan X, Yang C, Wang F et al (2016) Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew Chem Int Ed 85287:7252–7257CrossRefGoogle Scholar
  7. 7.
    Guo Z, Chen L, Wang Y-G, Wang C, Xia Y (2017) Aqueous lithium-ion batteries using polyimide-activated carbon composites anode and spinel LiMn2O4 cathode. ACS Sustain Chem Eng 5:1503–1508CrossRefGoogle Scholar
  8. 8.
    Tron A, Jo YN, Oh SH, Park YD, Mun J (2017) Surface modification of the LiFePO4 cathode for the aqueous rechargeable lithium ion battery. ACS Appl Mater Interfaces 9:12391–12399CrossRefGoogle Scholar
  9. 9.
    Hlongwa NW, Ikpo CO, Ross N, Nzaba M, Ndipingwi MM, Baker PGL et al (2016) Electrochemical studies on novel LiMnPO4 coated with magnesium oxide-gold composite thin film in aqueous electrolytes. J Nano Res 44:90–99CrossRefGoogle Scholar
  10. 10.
    Chen W, Lan M, Zhu D, Ji C, Feng X, Yang C et al (2013) Synthesis of Li2FeSiO4/C and its excellent performance in aqueous lithium-ion batteries. J Mater Chem A 1:10912–10917CrossRefGoogle Scholar
  11. 11.
    Gummow RJ, He Y (2014) Recent progress in the development of Li2MnSiO4 cathode materials. J Power Sources 253:315–331CrossRefGoogle Scholar
  12. 12.
    Cheng Q, He W, Zhang X, Li M, Wang L (2017) Modification of Li2MnSiO4 cathode materials for lithium-ion batteries: a review. J Mater Chem A 5:10772–10797CrossRefGoogle Scholar
  13. 13.
    Feng Y, Ji R, Ding Z, Zhang D, Liang C, Chen L et al (2018) Understanding the improved kinetics and cyclability of a Li2MnSiO4 cathode with calcium substitution. Inorg Chem 57:3223–3231CrossRefGoogle Scholar
  14. 14.
    Fleischmann S, Mancini M, Axmann P, Golla-Schindler U, Kaiser U, Wohlfahrt-Mehrens M (2016) Insights into the impact of impurities and non-stoichiometric effects on the electrochemical performance of Li2MnSiO4. ChemSusChem 9:2982–2993CrossRefGoogle Scholar
  15. 15.
    Kuganathan N, Islam MS (2009) Li2MnSiO4 lithium battery material: atomic-scale study of defects, lithium mobility, and trivalent dopants. Chem Mater 21:5196–5202CrossRefGoogle Scholar
  16. 16.
    Ding Z, Feng Y, Zhang D, Ji R, Chen L, Ivey DG et al (2018) Crystallographic habit tuning of Li2MnSiO4 nanoplates for high-capacity lithium battery cathodes. ACS Appl Mater Interfaces 10:6309–6316CrossRefGoogle Scholar
  17. 17.
    Aravindan V, Karthikeyan K, Lee JW, Madhavi S, Lee YS (2011) Synthesis and improved electrochemical properties of Li2MnSiO4 cathodes. J Phys D 44:152001CrossRefGoogle Scholar
  18. 18.
    Mancini M, Bekaert E, Diemant T, Marinaro M, de Biasi L, Behm RJ et al (2015) Study on the stability of Li2MnSiO4 cathode material in different electrolyte systems for Li-ion batteries. Electrochim Acta 176:679–688CrossRefGoogle Scholar
  19. 19.
    Yang R, Wang L, Deng K, Lv M, Xu Y (2016) A facile synthesis of Li2Fe1/3Mn1/3Ni1/3SiO4/C composites as cathode materials for lithium-ion batteries. J Alloys Compd 676:260–264CrossRefGoogle Scholar
  20. 20.
    Ndipingwi MM, Ikpo C, Hlongwa NW, Ross N, Masikini M, John SV et al (2018) Orthorhombic (Pmn21) nanostructured Li2MnSiO4/Al2O3 supercapattery electrode with efficient Li ion migratory pathway, Batteries Supercaps 1:223–235CrossRefGoogle Scholar
  21. 21.
    Fisher CAJ, Kuganathan N, Islam MS (2013) Defect chemistry and lithium-ion migration in polymorphs of the cathode material Li2MnSiO4. J Mater Chem A 1:4207–4214CrossRefGoogle Scholar
  22. 22.
    Borchert H, Shevchenko EV, Robert A, Mekis I, Kornowski A, Gru G et al (2005) Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles, 21:1931–1936Google Scholar
  23. 23.
    Hwang C, Kim T, Noh Y, Cha W, Shim J, Kwak K et al (2016) Synthesis, characterization, and electrochemical performance of V-doped Li2MnSiO4/C composites for Li-ion battery. Mater Lett 164:270–273CrossRefGoogle Scholar
  24. 24.
    Deng C, Zhang S, Wu YX, Zhao BD (2014) Partial substitution of Mn/Si with V, Cr or Al in Li2MnSiO4 nanoparticle: dependence of the physical and electrochemical properties on the substitution strategy. J Electroanal Chem 719:150–157CrossRefGoogle Scholar
  25. 25.
    Rangappa D, Murukanahally KD, Tomai T, Unemoto A, Honma I (2012) Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-Ion battery electrode. Nano Lett 12:1146–1151CrossRefGoogle Scholar
  26. 26.
    Kokalj A, Dominko R, Mali G, Meden A, Gaberscek M, Jamnik J (2007) Beyond one-electron reaction in Li cathode materials: designing Li2MnxFe1–xSiO4. Chem Mater 19:3633–3640CrossRefGoogle Scholar
  27. 27.
    Sirisopanaporn C, Dominko R, Masquelier C, Armstrong AR, Mali G, Bruce PG (2011) Polymorphism in Li2(Fe,Mn)SiO4: a combined diffraction and NMR study. J Mater Chem 21:17823–17831CrossRefGoogle Scholar
  28. 28.
    Gao K, Dai C-S, Lv J, Li S-D (2012) Thermal dynamics and optimization on solid-state reaction for synthesis of Li2MnSiO4 materials. J Power Sources 211:97–102CrossRefGoogle Scholar
  29. 29.
    Xie M, Luo R, Chen R, Wu F, Zhao T, Wang Q et al (2015) Template-assisted hydrothermal synthesis of Li2MnSiO4 as a cathode material for lithium ion batteries. Appl Mater Interfaces 20:10779–10784CrossRefGoogle Scholar
  30. 30.
    Liu SS, Song LJ, Yu BJ, Wang CY, Li MW (2016) Comparative study of the cathode and anode performance of Li2MnSiO4 for lithium-ion batteries. Electrochim Acta 188:145–152CrossRefGoogle Scholar
  31. 31.
    Gummow RJ, Han G, Sharma N, He Y (2014) Li2MnSiO4 cathodes modified by phosphorous substitution and the structural consequences. Solid State Ion 259:29–39CrossRefGoogle Scholar
  32. 32.
    Wang M, Yang M, Ma L, Shen X (2015) Synthesis and improved electrochemical properties of Na-substituted Li2MnSiO4 nanoparticles as cathode materials for Li-ion batteries. Chem Phys Lett 619:39–43CrossRefGoogle Scholar
  33. 33.
    Abdellahi A, Urban A, Dacek S, Ceder G (2016) Understanding the effect of cation disorder on the voltage profile of lithium transition-metal oxides. Chem Mater 28:5373–5383CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Miranda M. Ndipingwi
    • 1
    Email author
  • Chinwe O. Ikpo
    • 1
  • Ntuthuko W. Hlongwa
    • 1
  • Nomxolisi Dywili
    • 1
  • Anne Lutgarde Djoumessi Yonkeu
    • 1
  • Emmanuel I. Iwuoha
    • 1
  1. 1.SensorLab, Department of ChemistryUniversity of the Western CapeCape TownSouth Africa

Personalised recommendations