Journal of Applied Electrochemistry

, Volume 49, Issue 1, pp 79–86 | Cite as

Ionic liquid-based high-voltage flexible supercapacitor for integration with wearable human-powered energy harvesting system

  • Ke He
  • Ting Chong Wong
  • Gih Sheng LauEmail author
Research Article


In this work, we report the fabrication of a high-voltage flexible supercapacitor that is able to store energy harvested from a 3D-printed wearable human motion energy harvester and provide power supply to other wearable devices. To bestow the electrode with flexibility, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is incorporated with single-walled carbon nanotube (SWCNT) as electrode material, which dramatically decreases its Young’s modulus. Furthermore, the supercapacitor is sandwiched between self-healing layers that protects the device from mechanical failure caused by motion when mounted on the human body as wearable device. Owing to the use of ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4), as the electrolyte, the supercapacitor can be charged up to 2.5 V. This wide electrochemical window, with low equivalent series resistance (ESR), enhances the power and energy densities of the supercapacitor to 11 kW kg− 1 and 23 Wh kg− 1. The device presents excellent flexibility and mechanical durability. We realized a wearable self-powered and self-sustaining system by the integration of the as-prepared supercapacitor with a 3D-printed mechanical energy harvesting knee brace. Harvested energy generated by a tester wearing the system was sufficient to light up an LED light in a demonstration.

Graphical abstract


Supercapacitor Energy harvesting Ionic liquid Wearable Flexible supercapacitor 



This work was supported by Ministry of Education Singapore under the Translational R&D and Innovation Fund grant number MOE2014-TIF-1-G-010.

Supplementary material

10800_2018_1274_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1507 KB)


  1. 1.
    Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28(22):4203–4218. CrossRefGoogle Scholar
  2. 2.
    Agency IE (2014) More data, less energy: making network standby more efficient in billions of connected devices.
  3. 3.
    Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L, Kim DH (2016) A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 11(6):566–572. CrossRefGoogle Scholar
  4. 4.
    Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR, Son D, Kim DH (2014) Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun 5:5747. CrossRefGoogle Scholar
  5. 5.
    Choi MK, Yang J, Kang K, Kim DC, Choi C, Park C, Kim DH (2015) Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat Commun 6:7149. CrossRefGoogle Scholar
  6. 6.
    Kim DH, Lu N, Ghaffari R, Kim YS, Lee SP, Xu L,... Rogers JA (2011) Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat Mater 10(4):316–323. CrossRefGoogle Scholar
  7. 7.
    Liu Y, Liu Z, Zhu B, Yu J, He K, Leow WR,... Chen X (2017) Stretchable motion memory devices based on mechanical hybrid materials. Adv Mater. 29.
  8. 8.
    González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sustain Energy Rev 58(C):1189–1206CrossRefGoogle Scholar
  9. 9.
    Soavi F, Bettini LG, Piseri P, Milani P, Santoro C, Atanassov P, Arbizzani C (2016) Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems. J Power Sources 326:717–725. CrossRefGoogle Scholar
  10. 10.
    Wang ZL (2012) Self-powered nanosensors and nanosystems. Adv Mater 24(2):280–285CrossRefGoogle Scholar
  11. 11.
    Vullers RJM, van Schaijk R, Doms I, Van Hoof C, Mertens R (2009) Micropower energy harvesting. Solid State Electron 53(7):684–693. CrossRefGoogle Scholar
  12. 12.
    Pu X, Li L, Song H, Du C, Zhao Z, Jiang C,.. . Wang ZL (2015) A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv Mater 27(15):2472–2478. CrossRefGoogle Scholar
  13. 13.
    Kim KN, Chun J, Kim JW, Lee KY, Park J-U, Kim S-W,... Baik JM (2015) Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 9(6):6394–6400. CrossRefGoogle Scholar
  14. 14.
    Yi F, Wang J, Wang X, Niu S, Li S, Liao Q,.. . Wang ZL (2016) Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics. ACS Nano 10(7):6519–6525. CrossRefGoogle Scholar
  15. 15.
    Yang P-K, Lin L, Yi F, Li X, Pradel KC, Zi Y,... Wang ZL (2015) A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring. Adv Mater 27(25):3817–3824. CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Bai W, Cheng X, Ren J, Weng W, Chen P,... Peng H (2014) Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew Chem Int Ed Engl 53(52):14564–14568. CrossRefGoogle Scholar
  17. 17.
    Meng C, Liu C, Chen L, Hu C, Fan S (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10(10):4025–4031. CrossRefGoogle Scholar
  18. 18.
    Nyström G, Marais A, Karabulut E, Wågberg L, Cui Y, Hamedi MM (2015) Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries. Nat Commun 6:7259. CrossRefGoogle Scholar
  19. 19.
    Qi D, Liu Y, Liu Z, Zhang L, Chen X (2017) Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges. Adv Mater 29(5):1602802. CrossRefGoogle Scholar
  20. 20.
    Niu Z, Zhou W, Chen X, Chen J, Xie S (2015) Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv Mater 27(39):6002–6008. CrossRefGoogle Scholar
  21. 21.
    Qi D, Liu Z, Liu Y, Leow WR, Zhu B, Yang H,... Chen X (2015) Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. Adv Mater 27(37):5559–5566. CrossRefGoogle Scholar
  22. 22.
    Tang Y, Deng J, Li W, Malyi OI, Zhang Y, Zhou X,... Chen X Water-soluble sericin protein enabling stable solid–electrolyte interphase for fast charging high voltage battery electrode. Adv Mater.
  23. 23.
    Sun H, You X, Deng J, Chen X, Yang Z, Chen P,.. . Peng H (2014) A twisted wire-shaped dual-function energy device for photoelectric conversion and electrochemical storage. Angew Chem Int Ed Engl 53(26):6664–6668. CrossRefGoogle Scholar
  24. 24.
    Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G (2014) Flexible energy-storage devices: design consideration and recent progress. Adv Mater 26(28):4763–4782. CrossRefGoogle Scholar
  25. 25.
    Bae J, Song MK, Park YJ, Kim JM, Liu M, Wang ZL (2011) Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew Chem Int Ed Engl 50(7):1683–1687. CrossRefGoogle Scholar
  26. 26.
    Huang Y, Chunyi Z (2017) Functional flexible and wearable supercapacitors. J Phys D 50(27):273001CrossRefGoogle Scholar
  27. 27.
    Wang H, Yang Y, Guo L (2017) Nature-inspired electrochemical energy-storage materials and devices. Adv Energy Mater 7(5):1601709. CrossRefGoogle Scholar
  28. 28.
    Pan S, Ren J, Fang X, Peng H (2016) Integration: an effective strategy to develop multifunctional energy storage devices. Adv Energy Mater 6(4):1501867. CrossRefGoogle Scholar
  29. 29.
    Yang P, Mai W (2014) Flexible solid-state electrochemical supercapacitors. Nano Energy 8:274–290. CrossRefGoogle Scholar
  30. 30.
    Zhou G, Li F, Cheng H-M (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7(4):1307–1338. CrossRefGoogle Scholar
  31. 31.
    Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164(1):351–364. CrossRefGoogle Scholar
  32. 32.
    Saunier J, Alloin F, Sanchez JY, Caillon G (2003) Thin and flexible lithium-ion batteries: investigation of polymer electrolytes. J Power Sources 119:454–459. CrossRefGoogle Scholar
  33. 33.
    Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9(5):1872–1876. CrossRefGoogle Scholar
  34. 34.
    Petzetakis N, Doherty CM, Thornton AW, Chen XC, Cotanda P, Hill AJ, Balsara NP (2015) Membranes with artificial free-volume for biofuel production. Nat Commun 6:7529. CrossRefGoogle Scholar
  35. 35.
    Xie K, Li J, Lai Y, Zhang Z, Liu Y, Zhang G, Huang H (2011) Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. Nanoscale 3(5):2202–2207. CrossRefGoogle Scholar
  36. 36.
    Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD,... Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10(2):708–714. CrossRefGoogle Scholar
  37. 37.
    Jost K, Stenger D, Perez CR, McDonough JK, Lian K, Gogotsi Y, Dion G (2013) Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ Sci 6(9):2698–2705. CrossRefGoogle Scholar
  38. 38.
    Xu P, Wei B, Cao Z, Zheng J, Gong K, Li F,... Chou T-W (2015) Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers. ACS Nano 9(6):6088–6096. CrossRefGoogle Scholar
  39. 39.
    Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z,... Qu L (2013) All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25(16):2326–2331. CrossRefGoogle Scholar
  40. 40.
    Yue B, Wang C, Ding X, Wallace GG (2012) Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim Acta 68:18–24. CrossRefGoogle Scholar
  41. 41.
    Pu X, Li L, Liu M, Jiang C, Du C, Zhao Z,.. . Wang ZL (2016) Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv Mater 28(1):98–105. CrossRefGoogle Scholar
  42. 42.
    Gilshteyn EP, Amanbaev D, Silibin MV, Sysa A, Kondrashov VA, Anisimov AS, Kallio T, Nasibulin AG (2018) Flexible self-powered piezo-supercapacitor system for wearable electronics. Nanotechnology 29(32):325501Google Scholar
  43. 43.
    Wee G, Salim T, Lam YM, Mhaisalkar SG, Srinivasan M (2011) Printable photo-supercapacitor using single-walled carbon nanotubes. Energy Environ Sci 4(2):413–416. CrossRefGoogle Scholar
  44. 44.
    Tee BC, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7(12):825–832. CrossRefGoogle Scholar
  45. 45.
    Huang Y, Zhu M, Meng W, Pei Z, Liu C, Hu H, Zhi C (2015) Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 9(6):6242–6251. CrossRefGoogle Scholar
  46. 46.
    Sun H, You X, Jiang Y, Guan G, Fang X, Deng J,... Peng H (2014) Self-healable electrically conducting wires for wearable microelectronics. Angew Chem Int Ed Engl 53(36):9526–9531. CrossRefGoogle Scholar
  47. 47.
    Liu X, Wu D, Wang H, Wang Q (2014) Self-recovering tough gel electrolyte with adjustable supercapacitor performance. Adv Mater 26(25):4370–4375. CrossRefGoogle Scholar
  48. 48.
    Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao Z (2013) Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat Chem 5(12):1042–1048. CrossRefGoogle Scholar
  49. 49.
    Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451(7181):977–980. CrossRefGoogle Scholar
  50. 50.
    Montarnal D, Tournilhac F, Hidalgo M, Couturier JL, Leibler L (2009) Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers. J Am Chem Soc 131(23):7966–7967. CrossRefGoogle Scholar
  51. 51.
    Wang H, Zhu B, Jiang W, Yang Y, Leow WR, Chen X (2014) A mechanically and electrically self-healing supercapacitor. Adv Mater 26(22):3638–3643. CrossRefGoogle Scholar
  52. 52.
    fcubed (2016) Modular knee brace.
  53. 53.
    Xu G, Zheng C, Zhang Q, Huang J, Zhao M, Nie J,.. . Wei F (2011) Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res 4(9):870–881. CrossRefGoogle Scholar
  54. 54.
    Rashed AE, El-Moneim AA (2017) Two steps synthesis approach of MnO2/graphene nanoplates/graphite composite electrode for supercapacitor application. Mater Today Energy 3:24–31. CrossRefGoogle Scholar
  55. 55.
    Chen W, Rakhi RB, Alshareef HN (2012) High energy density supercapacitors using macroporous kitchen sponges. J Mater Chem 22(29):14394–14402. CrossRefGoogle Scholar
  56. 56.
    Gambou-Bosca A, Belanger D (2014) Effect of the formulation of the electrode on the pore texture and electrochemical performance of the manganese dioxide-based electrode for application in a hybrid electrochemical capacitor. J Mater Chem A 2(18):6463–6473. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of EngineeringRepublic PolytechnicSingaporeSingapore
  2. 2.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations