Journal of Applied Electrochemistry

, Volume 49, Issue 1, pp 99–110 | Cite as

Optimization of synthesis condition of water-resistant and thin titanium oxide layer-coated Ni-rich layered cathode materials and their cathode performance

  • Yubin Liu
  • Toyokazu Tanabe
  • Yuta Irii
  • Fumihiko Maki
  • Takashi Tsuda
  • Takao Gunji
  • Shinsaku Ugawa
  • Yuta Asai
  • Hojin Lee
  • Takeo Ohsaka
  • Futoshi MatsumotoEmail author
Research Article
Part of the following topical collections:
  1. Batteries


In this study, in order to develop water-resistant LiNiaCobAl1−abO2 (a > 0.85, NCA) cathode materials which exhibit high-rate performance, the surface coating of NCA with titanium oxide (TiOx) was examined. The synthesis conditions for the TiOx-coated NCA cathode materials were investigated, by taking into account some essential factors in the surface coating of NCA by TiOx, with a view to improving the rate performance. We successfully prepared the TiOx-coated NCA cathode material, the rate performance of which is superior to that of the conventionally prepared NCA cathode materials, typically using a polyvinylidene difluoride (PVdF) binder and N-methyl-2-pyrrolidone (NMP) solvent. Their surface analysis suggested that the specific surface structure of TiOx layer coated on the NCA particle leads to both a water-resistant property and a high permeability of Li+ ions through it in the charging/discharging process.

Graphical abstract


Lithium ion secondary battery Water-based hybrid polymer binder TiOx coating layer Ni-rich lithium transition metal oxide Water resistance 



We thank Mr. K. Shinoda for his help in STEM measurements at National Institute for Materials Science (NIMS) Battery Research Platform.

Supplementary material

10800_2018_1272_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2440 KB)


  1. 1.
    Loeffler N, Zamory JV, Laszczynski N, Doberdo I, Kim G-T, Passerini S (2014) Performance of LiNi1/3Mn1/3Co1/3O2/graphite batteries based on aqueous binder. J Power Sour 248:915–922CrossRefGoogle Scholar
  2. 2.
    Wu Q, Ha S, Prakash J, Dees DW, Lu W (2013) Investigations on high energy lithium-ion batteries with aqueous binder. Electrochim Acta 114:1–6CrossRefGoogle Scholar
  3. 3.
    Du Z, Rollag KM, Li J, An SJ, Wood M, Sheng Y, Mukherjee PP, Daniel C, Wood DL (2017) Enabling aqueous processing for crack-free thick electrodes. J Power Sour 354:200–206CrossRefGoogle Scholar
  4. 4.
    Prasanna K, Subburaj T, Jo YN, Lee WJ, Lee CW (2015) Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries. ACS Appl Mater Interfaces 7:7884–7890CrossRefGoogle Scholar
  5. 5.
    Doberdò I, Löffler N, Laszczynski N, Cericola D, Penazzi N, Bodoardo S, Kim GT, Passerini S (2014) Enabling aqueous binders for lithium battery cathodes—Carbon coating of aluminum current collector. J Power Sour 248:1000–1006CrossRefGoogle Scholar
  6. 6.
    Wood DL, Li J, Daniel C (2015) Prospects for reducing the processing cost of lithium ion batteries. J Power Sour 275:234–242CrossRefGoogle Scholar
  7. 7.
    Guerfi A, Kaneko M, Petitclerc M, Mori M, Zaghib K (2007) LiFePO4 water-soluble binder electrode for Li-ion batteries. J Power Sour 163:1047–1052CrossRefGoogle Scholar
  8. 8.
    Tsai J-C, Tsai F-Y, Tung C-A, Hsieh H-W, Li C-C (2013) Gelation or dispersion of LiFePO4 in water-based slurry? J Power Sour 241:400–403CrossRefGoogle Scholar
  9. 9.
    Loeffler N, Kopel T, Kim G-T, Passerinia S (2015) Polyurethane binder for aqueous processing of Li-ion battery electrodes. J Electrochem Soc 162:A2692–A2698CrossRefGoogle Scholar
  10. 10.
    Notake K, Gunji T, Kokubun H, Kosemura S. Mochizuki Y, Tanabe T, Kaneko S, Ugawa S, Lee H, Matsumoto F (2016) The application of a water-based hybrid polymer binder to a high-voltage and high-capacity Li-rich solid-solution cathode and its performance in Li-ion batteries. J Appl Electrochem 46:267–278CrossRefGoogle Scholar
  11. 11.
    Wakao T, Gunji T, Jeevagan AJ, Mochizuki Y, Kaneko S, Baba K, Watanabe M, Kanda Y, Murakami K, Omura M, Kobayashi G, Matsumoto F (2014) Stable charge/discharge cycle performance of a LiFePO4 cathode prepared with a carboxymethly cellulose binder. ECS Trans 58:19–25CrossRefGoogle Scholar
  12. 12.
    Tanabe T, Gunji T, Honma Y, Miyamoto K, Tsuda T, Mochizuki Y, Kaneko S, Ugawa S, Lee H, Ohsaka T, Matsumoto F (2017) Preparation of water-resistant surface coated high-voltage LiNi0.5Mn1.5O4 cathode and its cathode performance to apply a water-based hybrid polymer binder to Li-Ion batteries. Electrochim Acta 224:429–438CrossRefGoogle Scholar
  13. 13.
    Tanabe T, Liu Y, Miyamoto K, Irii Y, Maki F, Gunji T, Kaneko S, Ugawa S, Lee H, Ohsaka T, Matsumoto F (2017) Synthesis of water-resistant thin TiOx layer-coated high-voltage and capacity LiNiaCobAl1–a–bO2 (a> 0.85) cathode and its cathode performance to apply a water-based hybrid polymer binder to Li-ion batteries. Electrochim Acta 258:1348–1355CrossRefGoogle Scholar
  14. 14.
    Soeda K, Yamagata M, Ishikawa M (2015) Alginic acid as a new aqueous slurry-based binder for cathode materials of LIB. ECS Trans 64:13–22CrossRefGoogle Scholar
  15. 15.
    Liu W, Xu L, Sheng K, Zhou X, Zhang X, Chen C, Dong B, Bai X, Lu G, Song H (2018) Facile synthesis of controllable TiO2 composite nanotubes via templating route: highly sensitive detection of toluene by double driving from Pt@ZnO NPs. Sens Actuators B Chem 273:1676–1686CrossRefGoogle Scholar
  16. 16.
    Yusoff N, Kumar SV, Rameshkumar P, Pandikumar A, Shahid MM, Rahman MA, Huanga NM (2016) A facile preparation of titanium dioxide-iron oxide@silicon dioxide incorporated reduced graphene oxide nanohybrid for electrooxidation of methanol in alkaline medium. Electrochim Acta 192:167–176CrossRefGoogle Scholar
  17. 17.
    Pronina N, Klauson D, Moiseev A, Deubener J, Krichevskaya M (2015) Titanium dioxidesol–gel-coated expanded clay granules for use in photocatalytic fluidized-bed reactor. Appl Catal B 178:117–123CrossRefGoogle Scholar
  18. 18.
    Zhang C, Su J, Wang T, Yuan K, Chen C, Liu S, Huang T, Wu J, Lu H, Yu A (2018) Significant improvement on electrochemical performance of LiMn2O4 at elevated temperature by atomic layer deposition of TiO2 nanocoating. ACS Sustain Chem Eng 6:7890–7901CrossRefGoogle Scholar
  19. 19.
    Jayasree SS, Nair S, Santhanagopalan D (2018) ChemistrySelect, 3: 2763–2766CrossRefGoogle Scholar
  20. 20.
    Yuan X, Xu Q, Liu X, Liu H, Min Y, Xi Y (2016) Layered cathode material with improved cycle performance and capacity by surface anchoring of TiO2 nanoparticles for Li-ion batteries. Electrochim Acta 213:648–654CrossRefGoogle Scholar
  21. 21.
    Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Yubin Liu
    • 1
  • Toyokazu Tanabe
    • 2
  • Yuta Irii
    • 3
  • Fumihiko Maki
    • 3
  • Takashi Tsuda
    • 1
  • Takao Gunji
    • 1
  • Shinsaku Ugawa
    • 4
  • Yuta Asai
    • 4
  • Hojin Lee
    • 4
  • Takeo Ohsaka
    • 5
  • Futoshi Matsumoto
    • 1
    Email author
  1. 1.Department of Materials and Life ChemistryKanagawa UniversityYokohamaJapan
  2. 2.Department of Materials Science and EngineeringNational Defense AcademyYokosukaJapan
  3. 3.Nihon Kagaku Sangyo Co., LtdSaitamaJapan
  4. 4.JSR CorporationYokkaichiJapan
  5. 5.Research Institute for EngineeringKanagawa UniversityYokohamaJapan

Personalised recommendations