Journal of Applied Electrochemistry

, Volume 49, Issue 1, pp 1–15 | Cite as

Enhanced performance of nano-electrocatalysts of Pd and PdCo in neutral and alkaline media

  • María del C. AguirreEmail author
  • Bernabé L. Rivas
  • Luis M. Fabietti
  • Silvia E. Urreta
Research Article
Part of the following topical collections:
  1. Electrochemistry and Nanotechnology


Pd and PdCo nanostructures are synthesized by a soft-template route to be applied as electrocatalysts. Distinctive morphologies are obtained: nanowire-like structures, with mean diameter d = 33 nm (PdNW), forming an entangled network; nanocubes (PdNC) 64 nm in side, and PdCo(NS) nanospheres 60 nm in diameter. Pd:Co feed mol ratios (2:1) and (5:1) are used. Pd and Pd–Co nanostructures both crystallize in an fcc structure. A glassy carbon (GC) electrode is then modified with these colloidal dispersions, and further characterized by electrochemical methods. The modified PdNW/GC, PdNC/GC, and PdCoNS/GC electrodes are applied in the oxygen reduction (ORR) and oxygen evolution (OER) reactions, in a phosphate buffer pH 7 and 0.1 M NaOH solution. Voltammetric measurements are consistent with a diffusion-controlled mechanism, with a four-electron reduction process in each Pd and PdCo nanoelectrode. Resulting values of kinetic parameters indicate that the relative effectiveness of these solutions in ORR may be ordered as PdCo (5:1)NS/GC ≥ PdCo (2:1)NS/GC > PdNC/GC ≥ PdNW/GC > GC. For the OER, Tafel slopes are measured for the nanosized electrodes in both types of supporting electrolytes. Turnover frequencies estimated in alkaline solution for the OER indicate that nanostructured bimetallic PdCoNS/GC electrodes exhibit better activity than Pd/GC ones.

Graphical abstract


Pd and Pd(Co) nanostructures Chemical synthesis Soft-template Electrocatalysis 



The author MdCA thanks FONCYT–PICT 0074-Argentine, for financial support.


  1. 1.
    Pawlicka A (2009) Development of electrochromic devices. Recent Patents Nanotechnol 3(3):177–181. CrossRefGoogle Scholar
  2. 2.
    Gowda SR, Reddy ALM, Zhan X, Ajayan PM (2011) Building energy storage device on a single nanowire. Nano Lett 11(8):3329–3333CrossRefGoogle Scholar
  3. 3.
    Tasaltın N, Oztürk S, Kılınc N¸ Yüzer HZ, Oztürk ZZ (2010) Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte. Nanoscale Res Lett 5:1137–1143CrossRefGoogle Scholar
  4. 4.
    Chen JY, Liu HR, Ahmad N, Li YL, Chen ZY, Zhou WP, Han XF (2011) Effect of external magnetic field on magnetic properties of Co-Pt nanotubes and nanowires. J Appl Phys 109:07E157. CrossRefGoogle Scholar
  5. 5.
    Erikson H, Sarapuu A, Alexeyeva N, Tammeveski K, Solla-Gullón J, Feliu JM (2012) Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochim Acta 59:329–335CrossRefGoogle Scholar
  6. 6.
    Zhang Z, More KL, Sun K, Wu Z, Li W (2011) Preparation and characterization of PdFe nanoleaves as electrocatalysts for oxygen reduction reaction. Chem Mater 23(6):1570–1577CrossRefGoogle Scholar
  7. 7.
    Niu W, Li Z-Y, Shi L, Liu X, Li H, Han S, Chen J, Xu G (2008) Seed-mediated growth of nearly monodisperse palladium nanocubeswith controllable sizes. Cryst Growth Des 8(12):4440–4444CrossRefGoogle Scholar
  8. 8.
    Bisson L, Boissiere C, Nicole L, Grosso DJ, Jolivet P, Thomazeau C, Uzio D, Berhault G, Sánchez C (2009) Formation of palladium nanostructures in a seed-mediated synthesis through an oriented-attachment-directed aggregation. Chem Mater 21:2668–2678CrossRefGoogle Scholar
  9. 9.
    Niu W, Zhang L, Xu G (2010) Shape-controlled synthesis of single-crystalline palladium nanocrystals. ACS Nano 4(4):1987–1996CrossRefGoogle Scholar
  10. 10.
    Song Y, García RM, Dorin RM, Wang H, Qiu Y, Coker EN, Steen WA, Miller EJ, Shelnutt JA (2007) Synthesis of platinum nanowire networks using a soft template. Nano Lett 7(12):3650–3655CrossRefGoogle Scholar
  11. 11.
    Kim HJ, Kim YS, Seo MH, Choi SM, Cho J, Huber GW, Kim WB (2010) Highly improved oxygen reduction performance over Pt/C-dispersed nanowire network catalysts. Electrochem Commun 12:32–35CrossRefGoogle Scholar
  12. 12.
    Sun Z, Han Y, Gao M, Wei X, Hu X (2011) Cetyl trimethyl ammonium bromide-assisted electrochemical preparation of palladium-nickel bimetallic electrode. Int J Electrochem Sci 6:5626–5638Google Scholar
  13. 13.
    Veisz B, Király Z (2003) Size-selective synthesis of cubooctahedral palladium particles mediated by metallomicelles. Langmuir 19:4817–4824CrossRefGoogle Scholar
  14. 14.
    Fan F-R, Attia A, Sur UK, Chen J-B, Xie Z-X, Li J-F, Ren B, Tian Z-Q (2009) An effective strategy for room-temperature synthesis of single-crystalline palladium nanocubes and nanodendrites in aqueous solution. Crystal Growth Des 9(5):2335–2340CrossRefGoogle Scholar
  15. 15.
    Alexeyeva N, Sarapuu A, Tammeveski K, Vidal-Iglesias FJ, Solla-Gullón J, Feliu JM (2011) Electroreduction of oxygen on vulcan carbón supported Pd nanoparticles and Pd-M nanoalloys in acid and alkaline solutions. Electrochim Acta 56:6702–6708CrossRefGoogle Scholar
  16. 16.
    Raj CR, Abdelrahman I, Ohsaka IA T (2005) Gold nanoparticle-assisted electroreduction of oxygen. Electrochem Commun 7:888–893CrossRefGoogle Scholar
  17. 17.
    Su Y, Zhu Y, Yang X, Shen J, Lu J, Zhang X, Chen J, Li C (2013) A highly efficient catalyst toward oxygen reduction reaction in neutral media for microbial fuel cells. Ind Eng Chem Res 52:6076–6082CrossRefGoogle Scholar
  18. 18.
    Yang G, Chen D, Lv P, Kong X, Sun Y, Wang Z, Yuan Z, Liu H, Yang J (2016) Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications. Sci Rep. Google Scholar
  19. 19.
    Shim JH, Kim J, Lee C, Lee Y (2011) Electrocatalytic activity of gold and gold nanoparticles improved by electrochemical pretreatment. J Phys Chem C 115(1):305 309CrossRefGoogle Scholar
  20. 20.
    Gong X-B, You S-J, Wang X-H, Gan Y, Zhang R-N, Ren N-Q (2013) Silver tungsten carbide nanohybrid for efficient electrocatalysis of oxygen reduction reaction in microbial fuel cell. J Power Sources 225:330–337CrossRefGoogle Scholar
  21. 21.
    Yu EH, Cheng S, Logan BE, Scott K (2009) Electrochemical reduction of oxygen with iron phthalocyanine in neutral media. J Appl Electrochem 39:705–711CrossRefGoogle Scholar
  22. 22.
    Lyons ME, Brandon MP (2008) The oxygen evolution reaction on passive oxide covered transition metal electrodes in alkaline solution part II-cobalt. Int J Electrochem Sci 3:1425–1462Google Scholar
  23. 23.
    Erst D, Ahlberg E, AsBjornsson J, Olin H, Prikulis J (1998) Studies of the initial oxidation of cobalt in alkaline solutions using scanning electrochemical microscope. Appl Phys A 66:S477–S480CrossRefGoogle Scholar
  24. 24.
    Klug H, Alexander L (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New YorkGoogle Scholar
  25. 25.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  26. 26.
    Erikson H, Liik M, Sarapuu A, Kozlova J, Sammelselg V, Tammeveski K (2013) Oxygen reduction on electrodeposited Pd coatings on glassy carbon. Electrochim Acta 88:513–518CrossRefGoogle Scholar
  27. 27.
    Shao M-H, Sasaki K, Adzic RR (2006) Pd–Fe Nanoparticles as electrocatalysts for oxygen reduction. JACS Commun 128(11):3526–3527CrossRefGoogle Scholar
  28. 28.
    Strbac SS, Rakocevic Z (2017) Catalysis of oxygen reduction on electrochemically polycrystalline gold by Pd nanoislands in alkaline solution. J Electroanal Chem 789:76–84CrossRefGoogle Scholar
  29. 29.
    Wang Y, Balbuena PB (2005) Design of oxygen reduction bimetallic catalysts: ab-initio-derived thermodynamic guidelines. J Phys Chem B 109(40):18902–18906CrossRefGoogle Scholar
  30. 30.
    Wang W, Zheng D, Du C, Zou Z, Zhang X, Xia B, Yang H, Akins DL (2007) Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction. J Power Sources 167:243–249CrossRefGoogle Scholar
  31. 31.
    Zhang L, Lee K, Zhang J (2007) Effect of synthetic reducing agents on morphology and ORR activity of carbon-supported nano-Pd–Co alloy electrocatalysts. Electrochim Acta 52:7964–7971CrossRefGoogle Scholar
  32. 32.
    Fernandez JL, Walsh DA, Bard AJ (2005) Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy M–Co (M: Pd, Ag, Au). J Am Chem Soc 127:357–365CrossRefGoogle Scholar
  33. 33.
    Lee CL, Syu CC, Chiou HP, Liu CR, Huang CH (2012) Effect of electrochemical surface area on electroless copper deposition: Pd nanocubes as new activators. Electrochim Acta 59:587–591CrossRefGoogle Scholar
  34. 34.
    Liu Z-T, Huang K-L, Wu Y-S, Lyu Y-P, Lee C-L (2015) A comparison of physically and chemically defective graphene nanosheets as catalyst supports for cubic Pd nanoparticles in an alkaline oxygen reduction reaction. Electrochim Acta 186:552–561CrossRefGoogle Scholar
  35. 35.
    Lüsi M, Erikson H, Sarapuu AT, Solla-Gullon J, Feliu JM (2016) Oxygen reduction on carbon-supported palladium nanocubes in alkaline media. Electrochem Commun 64:9–13CrossRefGoogle Scholar
  36. 36.
    Lu Y, Jiang Y, Gao X, Wang X, Chen W (2014) Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts. JACS J Am Chem Soc 136:11687–11697CrossRefGoogle Scholar
  37. 37.
    Yeo BS, Bell AT (2011) Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc 133:5587–5593CrossRefGoogle Scholar
  38. 38.
    Lui TC, Pell WG, Conway BE (1999) Stages in the development of thick cobalt films exhibiting reversible redox behavior and pseudocapacitance. Electrochim Acta 44:2829–2842CrossRefGoogle Scholar
  39. 39.
    Lyons MGE, Brandon M (2010) A comparative study of the oxygen evolution reaction on oxidized nickel, cobalt and iron electrodes in base. J Electroanal Chem 641:119–130CrossRefGoogle Scholar
  40. 40.
    MacDonald JJ, Conway BE (1962) The role of surface films in the kinetics of oxygen evolution at Pd + Au alloy electrodes. Proc R Soc London. Google Scholar
  41. 41.
    Hu JM, Zhang JO, Cao CN (2004) Oxygen evolution reaction on IrO2-based DSA type electrodes: kinetics analysis of Tafel lines and EIS. Int J Hydrogen Energy 29:791–797CrossRefGoogle Scholar
  42. 42.
    Lattach Y, Rivera JF, Bamine T, Deronzier A, Moutet JC (2014) Iridium oxide-polymer nanocomposite electrode materials for water oxidation. ACS Appl Mater Interface 6:12852–12859CrossRefGoogle Scholar
  43. 43.
    Wang Z, Xiao S, Zhu Z, Long X, Zheng X, Lu X, Yang S (2015) Cobalt embedded nitrogen doped carbon nanotubes;a bifunctional catalyst for oxygen electrode reactions in a wide pH range. ACS Appl Mater Interfaces 7(7):4048–4055CrossRefGoogle Scholar
  44. 44.
    Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075CrossRefGoogle Scholar
  45. 45.
    Surendranath Y, Dinca M, Nocera DG (2009) Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J Am Chem Soc 131(7):2615–2620CrossRefGoogle Scholar
  46. 46.
    Surendranath Y, Dinca M, Nocera DG (2010) Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J Am Chem Soc 132(46):16501–16509CrossRefGoogle Scholar
  47. 47.
    Swierk JR, Don Tilley T (2018) Electrocatalytic water oxidation by single site and small nuclearity clusters of cobalt. J Electrochem Soc 165(4):H3028–H3033CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • María del C. Aguirre
    • 1
    • 2
    • 4
    Email author
  • Bernabé L. Rivas
    • 3
  • Luis M. Fabietti
    • 1
    • 2
    • 4
  • Silvia E. Urreta
    • 4
  1. 1.Instituto de Física Enrique Gaviola – CONICETCórdobaArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Departamento de PolímerosUniversidad de ConcepciónConcepciónChile
  4. 4.Facultad de Matemática, Astronomía, Física y ComputaciónUniversidad Nacional de Córdoba, Ciudad UniversitariaCórdobaArgentina

Personalised recommendations