Journal of Applied Electrochemistry

, Volume 49, Issue 1, pp 27–38 | Cite as

Optimization of hydrogen production over TiO2 supported copper and nickel oxides: effect of photoelectrochemical features

  • Robabeh BashiriEmail author
  • Norani Muti MohamedEmail author
  • Chong Fai Kait
  • Suriati Sufian
Research Article
Part of the following topical collections:
  1. Solar Cells


Low-cost solar hydrogen production through water splitting using photo-electrochemical (PEC) cell offers a clean and renewable source of energy. However, its low performance remains a primary concern. Solar hydrogen production of TiO2 supported copper and nickel oxides photoanod (Cu–Ni/TiO2) was significantly influenced by photoanode fabrication and reaction parameters. To maintain the optimum operating conditions of PEC cell for practical application, we systematically investigated the effect of sintering temperature, photoanode thickness, electrolyte concentration, and applied voltage on hydrogen production over 5 mol% Cu–Ni/TiO2 and PEC characteristics, including charge carrier transfer resistance, photocurrent density, and flat band potential. Findings reveal that the optimized sintering temperature for hydrogen production was 400 °C due to low charge transfer resistance and more excited electrons at the electrode/electrolyte interface. The photocatalyst with the four layers of printed 5 mol% Cu–Ni/TiO2 (thickness ~ 24.8 µm) improved the photocatalytic performance, highlighting the importance of the number of excited electrons and the surface area of the photocatalyst. Furthermore, applied voltage exerted the most significant effect on hydrogen production up to 24.9 mL at the optimum level of 3.4 V by minimizing the recombination rate of electron–hole pairs. The stability of the photoanode was tested under the optimum conditions for 4 days and the maximum accumulative hydrogen of 443.4 mL was produced over this highly stable photoanode.

Graphical abstract


Photo-electrochemical cell Sintering temperature TiO2 Thin film Electrochemical properties 



The authors would like to thank Universiti Teknologi PETRONAS and Centre of Innovative Nanostructures & Nanodevices (COINN) for technical support to make this research work feasible.

Supplementary material

10800_2018_1256_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2334 KB)


  1. 1.
    Leung DYC, Fu X, Wang C, Ni M, Leung MKH, Wang X et al (2010) Hydrogen production over titania-based photocatalysts. ChemSusChem 3(6):681–694CrossRefGoogle Scholar
  2. 2.
    Zhu J, Zäch M (2009) Nanostructured materials for photocatalytic hydrogen production. Curr Opin Colloid Interface Sci 14(4):260–269CrossRefGoogle Scholar
  3. 3.
    Gan J, Lu X, Tong Y (2014) Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation. Nanoscale 6(13):7142–7164CrossRefGoogle Scholar
  4. 4.
    Tüysüz H, Chan CK (2013) Preparation of amorphous and nanocrystalline sodium tantalum oxide photocatalysts with porous matrix structure for overall water splitting. Nano Energy 2(1):116–123CrossRefGoogle Scholar
  5. 5.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38CrossRefGoogle Scholar
  6. 6.
    Strataki N, Bekiari V, Kondarides DI, Lianos P (2007) Hydrogen production by photocatalytic alcohol reforming employing highly efficient nanocrystalline titania films. Appl Catal B 77:184–189CrossRefGoogle Scholar
  7. 7.
    Shi X, Zhang K, Shin K, Ma M, Kwon J, Choi IT et al (2015) Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device. Nano Energy 13:182–191CrossRefGoogle Scholar
  8. 8.
    Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrogen Energy 27(10):991–1022CrossRefGoogle Scholar
  9. 9.
    Minggu LJ, Wan Daud WR, Kassim MB (2010) An overview of photocells and photoreactors for photoelectrochemical water splitting. Int J Hydrogen Energy 35(11):5233–5244CrossRefGoogle Scholar
  10. 10.
    Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4(2):145–153CrossRefGoogle Scholar
  11. 11.
    Son M-K, Seo H, Kim S-K, Hong N-Y, Kim B-M, Park S et al (2013) Improved long-term durability of a parallel-type dye-sensitized solar cell module using a platinum metal grid fabricated by direct current magnetron sputtering with heat treatment. J Power Sources 222:333–339CrossRefGoogle Scholar
  12. 12.
    Grätzel M (1999) The artificial leaf, bio-mimetic photocatalysis. Cattech 3:3–17Google Scholar
  13. 13.
    Townsend TK, Sabio EM, Browning ND, Osterloh FE (2011) Photocatalytic water oxidation with suspended alpha-Fe2O3 particles-effects of nanoscaling. Energy Environ Sci 4(10):4270–4275CrossRefGoogle Scholar
  14. 14.
    Moniz SJA, Shevlin SA, Martin DJ, Guo Z-X, Tang J (2015) Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energy Environ Sci 8(3):731–759CrossRefGoogle Scholar
  15. 15.
    Lu X, Xie S, Yang H, Tong Y, Ji H (2014) Photoelectrochemical hydrogen production from biomass derivatives and water. Chem Soc Rev 43(22):7581–7593CrossRefGoogle Scholar
  16. 16.
    Colon G, Maicu M, Hidalgo M, Navio J (2006) Cu-doped TiO2 systems with improved photocatalytic activity. Appl Catal B 67(1–2):41–51CrossRefGoogle Scholar
  17. 17.
    Sun T, Fan J, Liu E, Liu L, Wang Y, Dai H et al (2012) Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: application in hydrogen evolution by water splitting under visible light irradiation. Powder Technol 228:210–218CrossRefGoogle Scholar
  18. 18.
    Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349CrossRefGoogle Scholar
  19. 19.
    Shiraishi Y, Sakamoto H, Sugano Y, Ichikawa S, Hirai T (2013) Pt–Cu bimetallic alloy nanoparticles supported on anatase TiO2: highly active catalysts for aerobic oxidation driven by visible light. ACS Nano 7(10):9287–9297CrossRefGoogle Scholar
  20. 20.
    Gallo A, Marelli M, Psaro R, Gombac V, Montini T, Fornasiero P et al (2012) Bimetallic Au-Pt/TiO2 photocatalysts active under UV-A and simulated sunlight for H2 production from ethanol. Green Chem 14(2):330–333CrossRefGoogle Scholar
  21. 21.
    Bashiri R, Mohamed NM, Fai Kait C, Sufian S, Khatani M (2017) Enhanced hydrogen production over incorporated Cu and Ni into titania photocatalyst in glycerol-based photoelectrochemical cell: effect of total metal loading and calcination temperature. Int J Hydrogen Energy 42(15):9553–9566CrossRefGoogle Scholar
  22. 22.
    Bashiri R, Mohamed NM, Fai Kait C, Sufian S, Kakooei S, Khatani M et al (2016) Optimization hydrogen production over visible light-driven titania-supported bimetallic photocatalyst from water photosplitting in tandem photoelectrochemical cell. Renew Energy 99:960–970CrossRefGoogle Scholar
  23. 23.
    Mohamed NM, Bashiri R, Fai Kait C, Sufian S, Kakooei S (2015) Photoelectrochemical behavior of bimetallic Cu–Ni and monometallic Cu, Ni doped TiO2 for hydrogen production. Int J Hydrogen Energy 40(40):14031–14038CrossRefGoogle Scholar
  24. 24.
    Fattah-alhosseini A, Torkaman M, Karami E (2015) Electrochemical and semiconducting behaviour of a brass alloy in borax solutions. J Mater Environ Sci 6(3):885–891Google Scholar
  25. 25.
    Lekse JW, Haycock BJ, Lewis JP, Kauffman DR, Matranga C (2014) The effect of electronic structure changes in NaInO2 and NaIn0.9Fe0.1O2 on the photoreduction of methylene blue. J Mater Chem A 2(24):9331–9337CrossRefGoogle Scholar
  26. 26.
    Palmas S, Polcaro AM, Ruiz JR, Da Pozzo A, Mascia M, Vacca A (2010) TiO2 photoanodes for electrically enhanced water splitting. Int J Hydrogen Energy 35(13):6561–6570CrossRefGoogle Scholar
  27. 27.
    Boschloo GK, Goossens A, Schoonman J (1997) Photoelectrochemical study of thin anatase TiO2 films prepared by metallorganic chemical vapor deposition. J Electrochem Soc 144(4):1311–1317CrossRefGoogle Scholar
  28. 28.
    Zhao D, Peng T, Lu L, Cai P, Jiang P, Bian Z (2008) Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles. J Phys Chem C 112(22):8486–8494CrossRefGoogle Scholar
  29. 29.
    Lu L, Li R, Fan K, Peng T (2010) Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles. Sol Energy 84(5):844–853CrossRefGoogle Scholar
  30. 30.
    Liu Q, Ding D, Ning C, Wang X (2015) Black Ni-doped TiO2 photoanodes for high-efficiency photoelectrochemical water-splitting. Int J Hydrogen Energy 40(5):2107–2114CrossRefGoogle Scholar
  31. 31.
    Hitchman LM, Tian F (2002) Studies of TiO2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol. J Electroanal Chem 538–539:165–172CrossRefGoogle Scholar
  32. 32.
    Zhang H, Wang W, Liu H, Wang R, Chen Y, Wang Z (2014) Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination. Mater Res Bull 49:126–131CrossRefGoogle Scholar
  33. 33.
    Song X-M, Wu J-M, Yan M (2008) Photocatalytic and photoelectrocatalytic degradation of aqueous Rhodamine B by low-temperature deposited anatase thin films. Mater Chem Phys 112(2):510–515CrossRefGoogle Scholar
  34. 34.
    Bennani Y, Appel P, Rietveld LC (2015) Optimisation of parameters in a solar light-induced photoelectrocatalytic process with a TiO2/Ti composite electrode prepared by paint-thermal decomposition. J Photochem Photobiol A 305:83–92CrossRefGoogle Scholar
  35. 35.
    Lopes T, Andrade L, Ribeiro HA, Mendes A (2010) Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy. Int J Hydrogen Energy 35(20):11601–11608CrossRefGoogle Scholar
  36. 36.
    Andrade L, Cruz R, Ribeiro HA, Mendes A (2010) Impedance characterization of dye-sensitized solar cells in a tandem arrangement for hydrogen production by water splitting. Int J Hydrogen Energy 35(17):8876–8883CrossRefGoogle Scholar
  37. 37.
    Chiang C-Y, Aroh K, Dass S, Ehrman S, Franson N, Satsangi VR (2011) Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting—part II. Photoelectrochemical study. Int J Hydrogen Energy 36(24):5519–15526CrossRefGoogle Scholar
  38. 38.
    Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36(3):307–326CrossRefGoogle Scholar
  39. 39.
    Ren K, Gan YX, Nikolaidis E, Sofyani SA, Zhang L (2013) Electrolyte concentration effect of a photoelectrochemical cell consisting of nanotube anode. Mater Sci 2013:1–7Google Scholar
  40. 40.
    Zhang S, Zhao H, Jiang D, John R (2004) Photoelectrochemical determination of chemical oxygen demand based on an exhaustive degradation model in a thin-layer cell. Anal Chim Acta 514(1):89–97CrossRefGoogle Scholar
  41. 41.
    Yuvaraj AL, Santhanaraj D (2014) A systematic study on electrolytic production of hydrogen gas by using graphite as electrode. Int Sch Res Notices 17(1):83–87Google Scholar
  42. 42.
    Mahrous A, Sakr I, Balabel A, Ibrahim K (2011) Experimental investigation of the operating parameters affecting hydrogen production process through alkaline water electrolysis. IJTEE 2(2):113–116CrossRefGoogle Scholar
  43. 43.
    Lee WJ, Shinde PS, Go GH, Ramasamy E (2011) Ag grid induced photocurrent enhancement in WO3 photoanodes and their scale-up performance toward photoelectrochemical H2 generation. Int J Hydrogen Energy 36(9):5262–5270CrossRefGoogle Scholar
  44. 44.
    Xue G, Guo Y, Yu T, Guan J, Yu X, Zhang J et al (2012) Degradation mechanisms investigation for long-term thermal stability of dye-sensitized solar cells. Int J Electrochem Sci 7:1496–1511Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Centre of Innovative Nanostructures & Nanodevices (COINN)Universiti Teknologi PETRONASBandar Seri IskandarMalaysia
  2. 2.Fundamental and Applied Sciences DepartmentUniversiti Teknologi PETRONASBandar Seri IskandarMalaysia
  3. 3.Chemical Engineering DepartmentUniversiti Teknologi PETRONASSeri IskandarMalaysia

Personalised recommendations