Advertisement

Journal of Applied Electrochemistry

, Volume 49, Issue 1, pp 39–44 | Cite as

Nano-engineering PdNi networks by voltammetric dealloying for ethanol oxidation

  • Jieting Ding
  • Shan JiEmail author
  • Hui WangEmail author
  • Bruno G. Pollet
  • Rongfang Wang
Research Article
Part of the following topical collections:
  1. Fuel cells

Abstract

PdNi particle networks (PdNi NN) are prepared by voltammetric dealloying using catkin-like PdNi nanoparticles as precursor. It is found that voltammetric dealloying plays an important role for the formation of these networks. Electron microscopy and X-ray diffraction are employed to show the evolution of the morphology of the as-prepared catalysts. The results generated from the cyclic voltammetry experiments showed that the PdNi NN was electrocatalytically active toward the ethanol oxidation reaction (EOR). Compared with PdNi/C and commercial Pd/C, the oxidation peak potential of PdNi NN shifted positively by + 105 and + 168 mV, and the peak current density increased by 1.53 and 3.75 times. The high electrocatalytic activity of PdNi NN toward the EOR afforded the feasibility to exploit highly active electro catalysts for direct ethanol fuel cells.

Graphical abstract

Keywords

PdNi Networks Dealloy Electrocatalyst Ethanol oxidation 

Notes

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (21766032 and 51661008) and Shenzhen Innovation Fund (JCYJ20160520161411353) for financially supporting this work.

References

  1. 1.
    Nguyen ST, Law HM, Nguyen HT, Kristian N, Wang S, Chan SH, Wang X (2009) Appl Catal B 91:507–515CrossRefGoogle Scholar
  2. 2.
    Chen L, Guo H, Fujita T, Hirata A, Zhang W, Inoue A, Chen M (2011) Adv Funct Mater 21:4364–4370CrossRefGoogle Scholar
  3. 3.
    Demirci UB (2007) J Power Sources 169:239–246CrossRefGoogle Scholar
  4. 4.
    Yi Q, Niu F, Sun L (2011) Fuel 90:2617–2623CrossRefGoogle Scholar
  5. 5.
    Yin J, Shan S, Ng MS, Yang L, Mott D, Fang W, Kang N, Luo J, Zhong CJ (2013) Langmuir 29:9249–9258CrossRefGoogle Scholar
  6. 6.
    Wang R, Ma Y, Wang H, Key J, Ji S (2014) Chem Commun 50:12877–12879CrossRefGoogle Scholar
  7. 7.
    Ma Y, Wang R, Wang H, Linkov V, Ji S (2014) Phys Chem Chem Phys 16:3593–3602CrossRefGoogle Scholar
  8. 8.
    Yang H, Wang H, Li H, Ji S, Davids MW, Wang R (2014) J Power Sources 260:12–18CrossRefGoogle Scholar
  9. 9.
    Liu HL, Nosheen F, Wang X (2015) Chem Soc Rev 44:3056–3078CrossRefGoogle Scholar
  10. 10.
    Zhu C, Guo S, Dong S (2013) Chemistry 19:1104–1111CrossRefGoogle Scholar
  11. 11.
    Hong W, Wang J, Wang E (2014) Electrochem Commun 40:63–66CrossRefGoogle Scholar
  12. 12.
    Lu Y, Jiang Y, Chen W (2013) Nano Energy 2:836–844CrossRefGoogle Scholar
  13. 13.
    Wang J, Zhang XB, Wang ZL, Wang LM, Xing W, Liu X (2012) Nanoscale 4:1549–1552CrossRefGoogle Scholar
  14. 14.
    Zhang L, Lu D, Chen Y, Tang Y, Lu T (2014) J Mater Chem A 2:1252–1256CrossRefGoogle Scholar
  15. 15.
    Herrmann A-K, Formanek P, Borchardt L, Klose M, Giebeler L, Eckert J, Kaskel S, Gaponik N, Eychmüller A (2013) Chem Mater 26:1074–1083CrossRefGoogle Scholar
  16. 16.
    Xu Y, Yuan Y, Ma A, Wu X, Liu Y, Zhang B (2012) Chemphyschem 13:2601–2609CrossRefGoogle Scholar
  17. 17.
    Ma Y, Wang H, Lv W, Ji S, Pollet BG, Li S, Wang R (2015) RSC Adv 5:68655–68661CrossRefGoogle Scholar
  18. 18.
    Li H, Li Y-J, Sun L-L, Zhao X-L (2013) Electrochim Acta 108:74–78CrossRefGoogle Scholar
  19. 19.
    Liu W, Herrmann AK, Geiger D, Borchardt L, Simon F, Kaskel S, Gaponik N, Eychmuller A (2012) Angew Chem 51:5743–5747CrossRefGoogle Scholar
  20. 20.
    Wan Q, Liu Y, Wang Z, Wei W, Li B, Zou J, Yang N (2013) Electrochem Commun 29:29–32CrossRefGoogle Scholar
  21. 21.
    Xu J, Fu G, Tang Y, Zhou Y, Chen Y, Lu T (2012) J Mater Chem 22:13585CrossRefGoogle Scholar
  22. 22.
    Snyder J, McCue I, Livi K, Erlebacher J (2012) J Am Chem Soc 134:8633–8645CrossRefGoogle Scholar
  23. 23.
    Oezaslan M, Heggen M, Strasser P (2012) J Am Chem Soc 134:514–524CrossRefGoogle Scholar
  24. 24.
    Ding J, Ji S, Wang H, Key J, Brett DJL, Wang R (2018) J Power Sources 374:48–54CrossRefGoogle Scholar
  25. 25.
    Ding J, Ji S, Wang H, Pollet BG, Wang R (2017) Electrochim Acta 255:55–62CrossRefGoogle Scholar
  26. 26.
    Wang R, Wang H, Luo F, Liao S (2018) Electrochem Energy Rev 1:324–387CrossRefGoogle Scholar
  27. 27.
    Yang S, Zhang X, Mi H, Ye X (2008) J Power Sources 175:26–32CrossRefGoogle Scholar
  28. 28.
    Ghosh D, Giri S, Mandal A, Das CK (2013) Chem Phys Lett 573:41–47CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Biological, Chemical Science and Chemical EngineeringJiaxing UniversityJiaxingChina
  2. 2.College of Chemical EngineeringQingdao University of Science and TechnologyQingdaoChina
  3. 3.Department of Energy and Process Engineering, Faculty of EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations