Journal of Applied Electrochemistry

, Volume 48, Issue 12, pp 1353–1361 | Cite as

Removal of atrazine by photoelectrocatalytic process under sunlight using WN-codoped TiO2 photoanode

  • Simon Komtchou
  • Nazar Delegan
  • Ahmad Dirany
  • Patrick DroguiEmail author
  • Didier Robert
  • My Ali El Khakani
Research Article


The present study was focused on the degradation of Atrazine (ATZ) and major by-products (DEA, DIA, DEDIA and ATZ-OH) from water by photoelectrocatalytic (PEC) oxidation process under solar light. The undoped TiO2, sub-stoichiometric TiO2 (TiO2−x) and codoped TiO2 (TiO2:WN) photoanodes were prepared by means of a radio frequency magnetron sputtering (RF-MS) deposition process. The X-ray photoelectron spectra (XPS) analysis shows that the N and W atoms were incorporated into the O and Ti lattice sites of TiO2 respectively (case of TiO2:WN film), while the XPS measurements of the TiO2−x films composition was determined to be TiO1.9. The UV–Vis transmittance spectra shows that in the case of the TiO2:WN films, the presence of nitrogen and tungsten improve the optical response of TiO2 under visible range compare to the presence of oxygen vacancies in to the TiO2−x films. The experimental results under solar light with an initial concentration of ATZ (100 µg L−1) show that after 180 min of treatment, the degradation of ATZ were 34.98%, 68.57% and 94.33% using TiO2, TiO2−x and TiO2:WN photoanodes, respectively. These results of ATZ degradation proved that TiO2:WN photoanode was more photoactive under solar light. The evolution by-products of ATZ under sunlight show that the principal mechanism of ATZ degradation was the oxidation of alkyl side chain and dealkylation.

Graphical abstract


Atrazine Photoelectrocatalytic oxidation Sub-stoichiometric TiO2 Codoped TiO2 Dealkylation 



Advanced oxidation processes












Direct photolysis






Radio frequency magnetron sputtering


Titanium dioxide


Titanium dioxide with oxygen vacancies


Titanium dioxide codoped with tungsten and nitrogen


X-ray photoelectron spectroscopy



The authors would like to acknowledge the financial support from the National Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec—Nature et technologies (FRQNT) through their strategic network Plasma-Québec.


  1. 1.
    Byer JD, Struger J, Sverko E, Klawunn P, Todd A (2011) Spatial and seasonal variations in atrazine and metolachlor surface water concentrations in Ontario (Canada) using ELISA. Chemosphere 82:1155–1160CrossRefGoogle Scholar
  2. 2.
    Daneshvar A, Aboulfadl K, Viglino L, Broséus R, Sauvé S, Madoux-Humery A-S, Weyhenmeyer GA, Prévost M (2012) Evaluating pharmaceuticals and caffeine as indicators of fecal contamination in drinking water sources of the Greater Montreal region. Chemosphere 88:131–139CrossRefGoogle Scholar
  3. 3.
    Woudneh MB, Ou Z, Sekela M, Tuominen T, Gledhill M (2009) Pesticide multiresidues in waters of the lower Fraser Valley, British Columbia, Canada. Part II. Groundw J Environ Qual 38:948–954CrossRefGoogle Scholar
  4. 4.
    Segura PA, MacLeod SL, Lemoine P, Sauvé S, Gagnon C (2011) Quantification of carbamazepine and atrazine and screening of suspect organic contaminants in surface and drinking waters. Chemosphere 84:1085–1094CrossRefGoogle Scholar
  5. 5.
    Komtchou S, Drogui P, Dirany A, Lafrance P (2016) Application des procédés d’oxydation avancée pour le traitement des eaux contaminées par les pesticides—revue de littérature. J Water Sci 29:231–262Google Scholar
  6. 6.
    Hayes TB, Khoury V, Narayan A, Nazir M, Park A, Brown T, Adame L, Chan E, Buchholz D, Stueve T, Gallipeau S (2010) Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proc Natl Acad Sci USA 107:4612–4617CrossRefGoogle Scholar
  7. 7.
    Trentacoste SV, Friedmann AS, Youker RT, Breckenridge CB, Zirkin BR (2001) Atrazine effects on testosterone levels and androgen-dependent reproductive organs in peripubertal male rats. J Androl 22:142–148PubMedGoogle Scholar
  8. 8.
    Komtchou S, Dirany A, Drogui P, Robert D, Lafrance P (2017) Removal of atrazine and its by-products from water using electrochemical advanced oxidation processes. Water Res 125:91–103CrossRefGoogle Scholar
  9. 9.
    Borràs N, Oliver R, Arias C, Brillas E (2010) Degradation of atrazine by electrochemical advanced oxidation processes using a boron-doped diamond anode. J Phys Chem A 114:6613–6621CrossRefGoogle Scholar
  10. 10.
    Luo C, Ma J, Jiang J, Liu Y, Song Y, Yang Y, Guan Y, Wu D (2015) Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5 and UV/S2O8 2−. Water Res 80:99–108CrossRefGoogle Scholar
  11. 11.
    Jing L, Chen B, Wen D, Zheng J, Zhang B (2017) Pilot-scale treatment of atrazine production wastewater by UV/O3/ultrasound: factor effects and system optimization. J Environ Manag 203:182–190CrossRefGoogle Scholar
  12. 12.
    Aquino JM, Miwa DW, Rodrigo MA, Motheo AJ (2017) Treatment of actual effluents produced in the manufacturing of atrazine by a photo-electrolytic process. Chemosphere 172:185–192CrossRefGoogle Scholar
  13. 13.
    McMurray TA, Dunlop PSM, Byrne JA (2006) The photocatalytic degradation of atrazine on nanoparticulate TiO2 films. J Photochem Photobiol A 182:43–51CrossRefGoogle Scholar
  14. 14.
    Parra S, Elena Stanca S, Guasaquillo I, Ravindranathan K, Thampi (2004) Photocatalytic degradation of atrazine using suspended and supported TiO2. Appl Catal B 51:107–116CrossRefGoogle Scholar
  15. 15.
    Samsudin EM, Hamid SBA, Juan JC, Basirun WJ, Centi G (2015) Enhancement of the intrinsic photocatalytic activity of TiO2 in the degradation of 1,3,5-triazine herbicides by doping with N,F. Chem Eng J 280:330–343CrossRefGoogle Scholar
  16. 16.
    Yu L, Wang Z, Shi L, Yuan S, Zhao Y, Fang J, Deng W (2012) Photoelectrocatalytic performance of TiO2 nanoparticles incorporated TiO2 nanotube arrays. Appl Catal B 113–114:318–325CrossRefGoogle Scholar
  17. 17.
    Komtchou S, Dirany A, Drogui P, Delegan N, El Khakani MA, Robert D, Lafrance P (2016) Degradation of atrazine in aqueous solution with electrophotocatalytic process using TiO2−x photoanode. Chemosphere 157:79–88CrossRefGoogle Scholar
  18. 18.
    Daghrir R, Drogui P, El Khakani MA (2013) Photoelectrocatalytic oxidation of chlortetracycline using Ti/TiO2 photo-anode with simultaneous H2O2 production. Electrochim Acta 87:18–31CrossRefGoogle Scholar
  19. 19.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  20. 20.
    Peng F, Cai L, Huang L, Yu H, Wang H (2008) Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method. J Phys Chem Solids 69:1657–1664CrossRefGoogle Scholar
  21. 21.
    Burda C, Lou Y, Chen X, Samia ACS, Stout J, Gole JL (2003) Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett 3:1049–1051CrossRefGoogle Scholar
  22. 22.
    Gong J, Yang C, Pu W, Zhang J (2011) Liquid phase deposition of tungsten doped TiO2 films for visible light photoelectrocatalytic degradation of dodecyl-benzenesulfonate. Chem Eng J 167:190–197CrossRefGoogle Scholar
  23. 23.
    Sathasivam S, Bhachu DS, Lu Y, Chadwick N, Althabaiti SA, Alyoubi AO, Basahel SN, Carmalt CJ, Parkin IP (2015) Tungsten doped TiO2 with enhanced photocatalytic and optoelectrical properties via aerosol assisted chemical vapor deposition. Nat Res 5:10952Google Scholar
  24. 24.
    Park B-I, Jie H, Song B-G, Kang K-M, Park J-K, Cho S-H (2014) The structural, morphological, and surface properties of tungsten-doped TiO2 nanopowders and their contribution to the photocatalytic activity. Res Chem Intermed 40:115–126CrossRefGoogle Scholar
  25. 25.
    Li J, Xu J, Dai W-L, Li H, Fan K (2008) One-pot synthesis of twist-like helix tungsten–nitrogen-codoped titania photocatalysts with highly improved visible light activity in the abatement of phenol. Appl Catal B 82:233–243CrossRefGoogle Scholar
  26. 26.
    Pandiyan R, Delegan N, Dirany A, Drogui P, El Khakani MA (2016) Probing the electronic surface properties and bandgap narrowing of in situ N, W, and (W,N) doped magnetron-sputtered TiO2 films intended for electro-photocatalytic applications. J Phys Chem C 120:631–638CrossRefGoogle Scholar
  27. 27.
    Delegan N, Daghrir R, Drogui P, El Khakani MA (2014) Bandgap tailoring of in-situ nitrogen-doped TiO2 sputtered films intended for electrophotocatalytic applications under solar light. J Appl Phys 116:153510CrossRefGoogle Scholar
  28. 28.
    Zhao L, Jiang Q, Lian J (2008) Visible-light photocatalytic activity of nitrogen-doped TiO2 thin film prepared by pulsed laser deposition. Appl Surf Sci 254:4620–4625CrossRefGoogle Scholar
  29. 29.
    Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730CrossRefGoogle Scholar
  30. 30.
    Jackman MJ, Thomas AG, Muryn C (2015) Photoelectron spectroscopy study of stoichiometric and reduced anatase TiO2(101) surfaces: the effect of subsurface defects on water adsorption at near-ambient pressures. J Phys Chem C 119:13682–13690CrossRefGoogle Scholar
  31. 31.
    Emeline AV, Kuznetsov VN, Rybchuk VK, Serpone N (2008) Visible-light-active titania photocatalysts: the case of N-doped s—properties and some fundamental issues. Int J Photoenergy 2008:19CrossRefGoogle Scholar
  32. 32.
    Lynch J, Giannini C, Cooper JK, Loiudice A, Sharp ID, Buonsanti R (2015) Substitutional or interstitial site-selective nitrogen doping in TiO2 nanostructures. J Phys Chem C 119:7443–7452CrossRefGoogle Scholar
  33. 33.
    Di Valentin C, Pacchioni G, Selloni A (2004) Origin of the different photoactivity of N-doped anatase and rutile TiO2. Phys Rev B 70:085116CrossRefGoogle Scholar
  34. 34.
    Mishra T, Mahato M, Aman N, Patel JN, Sahu RK (2011) A mesoporous WN co-doped titania nanomaterial with enhanced photocatalytic aqueous nitrate removal activity under visible light. Catal Sci Technol 1:609–615CrossRefGoogle Scholar
  35. 35.
    Sun M, Xu N, Cao YW, Yao JN, Wang EG (2000) Nanocrystalline tungsten oxide thin film: preparation, microstructure, and photochromic behavior. J Mater Res 15:927–933CrossRefGoogle Scholar
  36. 36.
    Sajjad AKL, Shamaila S, Zhang J (2012) Study of new states in visible light active W, N co-doped TiO2 photo catalyst. Mater Res Bull 47:3083–3089CrossRefGoogle Scholar
  37. 37.
    Delegan N, Pandiyan R, Komtchou S, Dirany A, Drogui P, El Khakani MA (2018) In-situ co-doping of sputter-deposited TiO2:WN films for the development of photoanodes intended for visible-light electro-photocatalytic degradation of emerging pollutants. J Appl Phys 123:205101CrossRefGoogle Scholar
  38. 38.
    Delegan N, Pandiyan R, Johnston S, Dirany A, Komtchou S, Drogui P, El Khakani MA (2018) Lifetime enhancement of visible light induced photocharges in tungsten and nitrogen in situ codoped TiO2:WN thin films. J Phys Chem C 112:5411–5419CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Simon Komtchou
    • 1
  • Nazar Delegan
    • 2
  • Ahmad Dirany
    • 1
  • Patrick Drogui
    • 1
    Email author
  • Didier Robert
    • 3
  • My Ali El Khakani
    • 2
  1. 1.Institut National de la Recherche Scientifique (INRS-Centre Eau, Terre et Environnement)Université du QuébecQuebecCanada
  2. 2.Institut National de la Recherche Scientifique (INRS-Centre Énergie, Matériaux et Télécommunications)Université du QuébecVarennesCanada
  3. 3.Institut de Chimie et Procédés pour l’Énergie, l’Environnement et la Santé (ICPEES), CNRSUniversité de StrasbourgSaint-AvoldFrance

Personalised recommendations