Skip to main content
Log in

Systematic studies of TiO2-based photocatalysts anti-algal effects on Chlorella vulgaris

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, the validity of TiO2-based photocatalysts anti-algal effects was examined with Chlorella vulgaris. Cu-modified TiO2 (without N dopants) showed clear anti-algal effect under white LED light. N-doped TiO2 (both with and without Cu modification) and Cu-modified TiO2 (without N dopants) showed clear anti-algal effects when UV light was used together with white LED light. S-doped TiO2 had no anti-algal effects and even promoted the growth of algae. The degree of the anti-algal effect differed depending on the dopants, surface modifications, and irradiation light. Photocatalysts create several active spices during their photocatalytic processes. Of these, the effects of superoxide radical (O ·−2 ) and hydrogen peroxide (H2O2) on algae growth were examined. Photocatalysts with high anti-algal effect produced hydrogen peroxides effectively, while there was no correlation between productivity of superoxide radical and anti-algal effects. Thus, the ability to produce hydrogen peroxide is a plausible factor for determining the efficiency of the anti-algal effect of a photocatalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Asao T, Kitazawa H, Ban T, Pramanik MHR, Matsui Y, Hosoki T (2004) Search of autotoxic substances in some leaf vegetables. J Jpn Soc Hortic Sci 73:247–249. doi:10.2503/jjshs.73.247

    Article  CAS  Google Scholar 

  2. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. doi:10.1038/238037a0

    Article  CAS  Google Scholar 

  3. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582. doi:10.1016/j.surfrep.2008.10.001

    Article  CAS  Google Scholar 

  4. Miyama Y, Sunada K, Fujikawa S, Hashimoto K (2009) Photocatalytic treatment of waste nutrient solution from soil-less cultivation of tomatoes planted in rice hull substrate. Plant Soil 318:275–283. doi:10.1007/s11104-008-9837-4

    Article  CAS  Google Scholar 

  5. Tajima M, Fukuda K, Komatsubara S (2014) Japan patent, P5419029 (in Japanese)

  6. Peller JR, Whitman RL, Griffith S, Harris P, Peller C, Scalzitti J (2007) TiO2 as a photocatalyst for control of the aquatic invasive alga, Clodophora, under natural and artificial light. J Photochem Photobiol A Chem 186:212–217. doi:10.1016/j.photochem.2006.08.009

    Article  CAS  Google Scholar 

  7. Shin H-J, Kim B-H, Seo HS, Kim CS, Kook J-K, Lim G-T, Cho D-L, Kim D, Ohk SH, Ko Y-M (2009) Degradation of Cochlodinium polykrikoides using photocatalytic reactor with TiO2-coated alumina. Biotechnol Bioprocess Eng 14:531–535. doi:10.1007/s12257-009-0048-5

    Article  CAS  Google Scholar 

  8. Ochiai T, Fukuda T, Nakata K, Murakami T, Tryk DA, Koide Y, Fujishima A (2010) Photocatalytic inactivation and removal of algae with TiO2-coated materials. J Appl Electrochem 40:1737–1742. doi:10.1007/s10800-010-0133-7

    Article  CAS  Google Scholar 

  9. Metzler DM, Li M, Erdem A, Huang CP (2011) Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chem Eng J 170:538–546. doi:10.1016/j.cej.2011.02.002

    Article  CAS  Google Scholar 

  10. Gu N, Gao J, Wang K, Yang X, Dong W (2015) ZnO-montmorillonite as photocatalyst and flocculant for inhibition of cyanobacterial bloom. Water Air Soil Pollut 226:136. doi:10.1007/s11270-015-2407-5

    Article  Google Scholar 

  11. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349. doi:10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  12. Details of this microbial culture is described in the following web site. http://mcc.nies.go.jp/02medium-e.html#c

  13. Ukeda H (2004) Detection of superoxide anion with WST-1 and its application. Dojin News 112:1–8 (in Japanese)

    CAS  Google Scholar 

  14. Oritani T, Fukuhara N, Okajima T, Kitamura F, Ohsaka T (2004) Electrochemical and spectroscopic studies on electron-transfer reaction between novel water-soluble tetrazolium salts and a superoxide ion. Inorg Chim Acta 357:436–442. doi:10.1016/j.ica.2003.05.007

    Article  CAS  Google Scholar 

  15. Imase M, Ohko Y, Takeuchi M, Hanada S (2013) Estimating the viability of Chlorella exposed to oxidative stresses based around photocatalysis. Int Biodeterior Biodegrad 78:1–6. doi:10.1016/j.ibiod.2012.12.006

    Article  CAS  Google Scholar 

  16. Hirakawa T, Nosaka Y (2008) Selective production of superoxide ions and hydrogen peroxide over nitrogen- and sulfur-doped TiO2 photocatalysts with visible light in aqueous suspension systems. J Phys Chem C 112:15818–15823. doi:10.1021/jp8055015

    Article  CAS  Google Scholar 

  17. Hirakawa T, Nosaka Y (2002) Properties of O ·−2 and OH· formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 18:3247–3254. doi:10.1021/la015685a

    Article  CAS  Google Scholar 

  18. Liu M, Qiu X, Miyauchi M, Hashimoto K (2011) Cu(II) oxide amorphous nanoclusters grafted Ti3+ self-doped TiO2: an efficient visible light photocatalyst. Chem Mater 23:5282–5286. doi:10.1021/cm203025b

    Article  CAS  Google Scholar 

  19. Yamanaka K, Morikawa T (2012) Charge-carrier dynamics in nitrogen-doped TiO2 powder studied by femtosecond time-resolved diffuse reflectance spectroscopy. J Phys Chem C 116:1286–1292. doi:10.1021/jp209210u

    Article  CAS  Google Scholar 

  20. Morikawa T, Irokawa Y, Ohwaki T (2006) Enhanced photocatalytic activity of TiO2−xNx loaded with copper ions under visible light irradiation. Appl Catal A 314:123–127. doi:10.1016/j.apcata.2006.08.011

    Article  CAS  Google Scholar 

  21. Yamanaka K, Ohwaki T, Morikawa T (2013) Charge-carrier dynamics in Cu- or Fe-loaded nitrogen-doped TiO2 powder studied by femtosecond diffuse reflectance spectroscopy. J Phys Chem C 117:16448–16456. doi:10.1021/jp404431z

    Article  CAS  Google Scholar 

  22. Mallick N (2004) Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. J Plant Physiol 161:591–597. doi:10.1078/0176-1617-01230

    Article  CAS  Google Scholar 

  23. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. doi:10.1007/s00425-003-1105-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Strategic International Collaborative Research Program (SICORP) of the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiro Suzuki.

Additional information

Norihiro Suzuki and Takuo Sanada have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, N., Sanada, T., Terashima, C. et al. Systematic studies of TiO2-based photocatalysts anti-algal effects on Chlorella vulgaris . J Appl Electrochem 47, 197–203 (2017). https://doi.org/10.1007/s10800-016-1031-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1031-4

Keywords

Navigation