Skip to main content
Log in

Effect of sodium chloride on corrosion of mild steel in CO2-saturated brines

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Corrosion rates of mild steel were measured in oxygen-free, CO2-saturated brines as a function of NaCl concentration employing electrochemical techniques. Decreased corrosion rates were observed as salt concentration increased. However, at high salt concentration (≥20 wt% NaCl), corrosion rates were independent of the flow rate of CO2-saturated brine. To understand this phenomenon, corrosion surfaces were analyzed by scanning electron microscopy and X-ray diffraction and showed only residual iron carbide for salt concentrations of 0.5–5 wt%. However, at 20 wt% NaCl, a porous corrosion scale with embedded crystals, possibly magnetite, was observed. No iron carbonate was observed and water chemistry showed it was 10,000 times below saturation. A numerical model of corrosion in CO2–NaCl systems was able to predict the reduced corrosion rates with salt concentration increase as a consequence of reduced solubility of CO2 (“salting-out”). However, the model did not predict that corrosion rates were flow-independent at high salt concentration. These results demonstrate that flow-independent corrosion is a consequence of a diffusion barrier created by magnetite scale, present only at high salt concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pachauri RK, Reisinger A (2007) Climate change 2007: Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

  2. Bachu S (2000) Energy Convers Manag 41:953

    Article  CAS  Google Scholar 

  3. Bachu S (2002) Energy Convers Manag 43:87

    Article  CAS  Google Scholar 

  4. Carey JW, Wigand M, Chipera S et al (2007) Int J of Greenh Gas Con 1:75

    Article  CAS  Google Scholar 

  5. Crow W, Carey JW, Gasda S et al (2010) Int J of Greenh Gas Con 4:186

    Article  CAS  Google Scholar 

  6. Carey JW, Svec R, Grigg R et al (2010) Int J of Greenh Gas Con 4:272

    Article  CAS  Google Scholar 

  7. Han J, Carey JW, Zhang J (2010) 9th Annual Conference for Carbon Capture and Sequestration, paper no# 361

  8. Woollam RC, Hernandez SE (2006) SPE international oilfield corrosion symposium, paper no. 100673. Society of Petroleum Engineers, Aberdeen, UK

  9. Nyborg R (2010) NACE CORROSION/2010, paper no. 10371.

  10. Han J, Carey JW, Zhang J (2011) Int J of Greenh Gas Con. doi:10.1016/j.ijggc.2011.02.005

  11. Chin RJ, Nobe K (1972) J Electrochem Soc 119:1457

    Article  CAS  Google Scholar 

  12. Darwish NA, Hilbert F, Lorenz WJ et al (1973) Electrochim Acta 18:421

    Article  CAS  Google Scholar 

  13. Kuo HC, Nobe K (1978) J Electrochem Soc 125:853

    Article  CAS  Google Scholar 

  14. MacFarlane DR, Smedley IS (1986) J Electrochem Soc 133:2240

    Article  CAS  Google Scholar 

  15. Asakura S, Nobe K (1971) J Electrochem Soc 118:13

    Article  CAS  Google Scholar 

  16. Burstein GT, Davies DH (1980) Corros Sci 20:1143

    Article  CAS  Google Scholar 

  17. Burstein GT, Davies DH (1980) J Electrochem Soc 128:33

    Article  Google Scholar 

  18. Ashley GW, Burstein GT (1991) Corrosion 47:908

    CAS  Google Scholar 

  19. Wang Z, Moore RC, Felmy AR et al (2001) Waste Manag 21:335

    Article  CAS  Google Scholar 

  20. Cid M, Penuela A, Pett MC (1985) Mater Chem Phys 13:139

    Article  CAS  Google Scholar 

  21. Foley RT (1970) Corrosion 26:58

    CAS  Google Scholar 

  22. Kirby GN (1995) Chem Eng Prog 91:47

    CAS  Google Scholar 

  23. Fang H, Nešić S, Brown BN (2007) NACE CORROSION/2007, paper no. 06372

  24. Fang H, Brown BN, Nešić S (2010), NACE CORROSION/2010, paper no. 10276

  25. Nešić S, Postlethwaite J, Olsen S (1996) Corrosion 54:280

    Google Scholar 

  26. Conway BE (1985). In: Conway BE, White RE, Bockris JO’M (eds) Modern aspects of electrochemistry, no. 16. Plenum Press, New York

  27. Bockris JO’M, Drazic D, Despic AR (1961) Electrochim Acta 4:325

    Article  CAS  Google Scholar 

  28. Harrington SP, Devine TM (2008) J Electrochem Soc 155:C381

    Article  CAS  Google Scholar 

  29. De Waard C, Williams DE (1975) Corrosion 31:177

    Google Scholar 

  30. Norsok Standard M-506, CO2 corrosion rate calculation model (Rev. 2). Available via DIALOG. http://www.standard.no/en/Sectors/Petroleum/NORSOK-Standard-Categories/M-Material/M-5061/. Accessed 15 Jan 2011

Download references

Acknowledgments

The authors thank the Fossil Energy Program of the Department of Energy (FE-10-001) for funding support. The authors would like to acknowledge Michael S. Rearick from GGRL Lab (Geology Geochemistry Research Lab), Earth and Environmental Sciences Division, Los Alamos National Laboratory for his water chemistry analysis. The manuscript was significantly improved by comments from anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiabin Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J., Carey, J.W. & Zhang, J. Effect of sodium chloride on corrosion of mild steel in CO2-saturated brines. J Appl Electrochem 41, 741–749 (2011). https://doi.org/10.1007/s10800-011-0290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0290-3

Keywords

Navigation