Interdisciplinary craft designing and invention pedagogy in teacher education: student teachers creating smart textiles

  • Seija KarppinenEmail author
  • Veera Kallunki
  • Kauko Komulainen


The paper discusses how a teaching approach, interdisciplinary design and invention pedagogy, affected primary school student teachers’ learning outcomes through the craft design process in pre-service teacher education. This study applies developmental work research (Engeström in J Educ Work 14(1):133–156, 2001; Engeström in Yhteiskehittely ja vaihdon vyöhykkeet tutkijoiden ja elinkeinoelämän välillä 2013; Galison in Image & logic: a material culture of microphysics. The University of Chicago Press, Chicago, 1997; Gorman in Trading zones, interactional expertise and interdisciplinary collaboration 2005) that aims to develop educators’ work involved here. To support a craft-designing process and making innovative artefacts, two disciplines—natural science (physics) and drama—as examples of interdisciplinarity were invited to contribute to the craft process. The craft course on ‘smart textiles’ was carried out in the spring of 2014 and 2015 at the University of Helsinki in pre-service primary teacher education. The aim of the crafts course was to get student teachers familiar with different dimensions of crafts (textile, design and technology), inquiry-based designing and an interdisciplinary teaching approach to be used in a primary school context. The craft task included working in small groups and designing smart textiles. Student teachers documented their designing and implementation processes through photos and videos using applications such as iMovie or Movie maker. In addition, participants wrote comprehensions of their projects in learning diaries. The data consist of student teachers’ learning diaries (N = 17) and prototypes (N = 17), which are analysed by qualitative content analysis. As results, first, the paper presents some innovative artefacts that student teachers created. Second, it describes the learning that emerged in pedagogical thinking of student teachers related to the interdisciplinary designing process, including (1) four interdisciplinary contexts, (2) new pedagogic thinking and (3) change of attitude towards integrative teaching.


Interdisciplinary teaching Smart textiles Craft designing Making STEAM disciplines Primary teacher education 


  1. Andersson Schaeffer, J., & Palmgren, M. (2017). Visionary expectations and novice designers—Prototyping in design education. Design and Technology Education: An International Journal, 22(1). Accessed May 9, 2017.
  2. Anttila, P. (2006). Tutkimisen taito ja tiedonhankinta [Skill of researching and data collecting]. Hamina: Akatiimi.Google Scholar
  3. Blikstein, P. (2013a). Digital fabrication and “making” in education: The democratization of innovation. Accessed February 6, 2017.
  4. Blikstein, P. (2013b). Seymour Papert’s Legacy: Thinking about learning and learning about thinking. Accessed January 23, 2017.
  5. Braund, M. (2015). Drama and learning science: An empty space? British Educational Research Journal, 41(1), 102–121.CrossRefGoogle Scholar
  6. Bresler, L. (1995). The Subservient, co-equal, affective, and social integration styles and their implications for the arts. Arts Education Policy Review, 96(5), 31–37.CrossRefGoogle Scholar
  7. Cantell, H. (Ed.). (2015). Näin rakennat monialaisia oppimiskokonaisuuksia [How to create multidisciplinary, study wholes]. Jyväskylä: PS-kustannus.Google Scholar
  8. Dewey, J. (1933). How we think: A restatement of the relation of reflective thinking to the educative process (1910), Revised edition. Boston: Heath. Read more: John Dewey (1859–1952). Experience and reflective thinking, learning, school and life, democracy and education—Experiences, philosophy, society, and educational. Accessed May 12, 2017.
  9. Dillon, J. (2008). A review of the research on practical work in school science. London: King’s College.
  10. Drake, S. M., & Burns, R. C. (2004). Meeting standards through integrated curriculum. Alexandria, VA: Association of Supervision and Curriculum Development.Google Scholar
  11. ELI (Educause Learning Initiative). (2013). 7 things you should know about makerspaces. Accessed February 6, 2017.
  12. Engeström, Y. (2001). Expansive learning at work: Toward an activity theoretical reconceptualization. Journal of Education and Work, 14(1), 133–156. Scholar
  13. Engeström, Y. (2013). Yhteiskehittely ja vaihdon vyöhykkeet tutkijoiden ja elinkeinoelämän välillä [Collaborative development and the zones of exchange between researchers and economic life]. Lecture at the University of Helsinki 17.2.2012.Google Scholar
  14. FabLearn labs. Accessed January 23, 2017.
  15. Finnish National Agency for Education. (2014). Core curriculum for basic education. Helsinki: Finnish National Board of Education.Google Scholar
  16. Galison, P. (1997). Image & logic: A material culture of microphysics. Chicago: The University of Chicago Press.Google Scholar
  17. Gomez, T. (2015). Creative processes in collaborative design. EINA Journal of Design Processes, 1(1), 14–22.Google Scholar
  18. Gorman, M. E. (2005) Trading zones, interactional expertise and interdisciplinary collaboration. Accessed April 9, 2017.
  19. Hast, M. (2011). Konstruktio käsityön teknologiasta: analyysi- ja tulkintaprosessi teknologiasta yleissivistävän käsityön oppiaineen osana [Construction of technology in crafts: Analysis and interpretation of technology as part of crafts subject in basic education]. Acta Universitatis Lapponiensis 208. Rovaniemi: University of Lappland.Google Scholar
  20. Heikkinen, H. (2004). Draamakasvatus “tekstuaalisena leikkikenttänä” – draamakasvatus osana laajaalaista kulttuurikasvatusta [Drama pedagogy as part of a cultural education]. FIDEA 1–2004, pp. 10–14.Google Scholar
  21. Henderson, J. G. (2001). Reflective teaching: Professional artistry through inquiry. Upper Saddle River, NJ: Merrill/Prentice Hall.Google Scholar
  22. Hill, A. M. (1998). Problem solving in real-life contexts: An alternative for design in technology education. International Journal of Technology and Design Education, 8, 203–220.CrossRefGoogle Scholar
  23. Hill, A. M. (1999). Community-based projects in technology education: An approach for relevant learning. In W. E. Theuerkauf & M. J. Dyrenfurth (Eds.), International perspectives on technological education: Outcomes and futures (pp. 285–298). Braunschweig: Braunschweig/Ames.Google Scholar
  24. Hill, A. M., & Smith, H. A. (2003). Many paths to meaning: Research support for the study of technology in secondary school curriculum. In Proceedings from the PATT 13 conference, current issue. University of Glasgow, Scotland, UK.Google Scholar
  25. Kallunki, V., Karppinen, S., & Komulainen, K. (2017). Becoming animated when teaching physics, crafts and drama together: A multidisciplinary course for student-teachers. Journal of Education for Teaching, 43, 32–47.CrossRefGoogle Scholar
  26. Kangas, K. (2014). The artifact project: Promoting design learning in the elementary classroom. Home Economics and Craft Studies Research Reports, 35. Helsinki: University of Helsinki.Google Scholar
  27. Karppinen, S. (2017). The crafts in interdisciplinary curriculum in School. In E. Garber, L. Hochtritt & M. Sharma (Eds.), Makers, crafters, educators: Working for cultural change. Routledge.Google Scholar
  28. Karppinen, S., Kallunki, V., Kairavuori, S., Komulainen, K., & Sintonen, S. (2013). Interdisciplinary integration in teacher education. In K. Tirri & E. Kuusisto (Eds.), Educational domains (pp. 149–158). Rotterdam: Sense Publishers.CrossRefGoogle Scholar
  29. Karppinen, S., Komulainen, K., Kallunki, V., Sintonen, S., & Kaasinen, A. (2012). Reflecting concept of design learning in collaborative development work—towards integrative teaching practices in Finnish teacher education. Lifelong Learning in Europe (4/2012). Accessed April 10, 2017.
  30. Kurki-Suonio, R., & Kurki-Suonio, K. (1994). Fysiikan merkitykset ja rakenteet [Meanings and structures of physics]. Helsinki: Limes ry.Google Scholar
  31. Lambert, J. (2013). Digital Storytelling: Capturing Lives, Creating Community. Center for Digital Storytelling. New York: Routledge.CrossRefGoogle Scholar
  32. Langkau, T., Haupt, W., & Wehling, J. (2003). Technology learning by theatre-playing. In J. R. Dakers, & M. J. de Vries (Eds.), PATT-13. Pupils attitudes towards technology. International conference on design and technology educational research.Google Scholar
  33. Lipponen, P., & Rönnholm, A. (2016). Pulpetista tablettiin [From desk to tablet], Polemia no. 102. Sastamala: Pole-Kuntatieto Oy.Google Scholar
  34. McGee, P. (2015). The Instructional Value of Digital Storytelling, Higher Education, Professional, and AdultLearning Settings. New York: Routledge.Google Scholar
  35. McGlashan, A. (2017). A pedagogic approach to enhance creative Ideation in classroom practice. International Journal of Technology and Design Education. Scholar
  36. Niemi, H., Harju, V., Vivitsou, M., Viitanen, K., Multisilta, J., & Kuokkanen, A. (2014). Digital storytelling for21st-century skills in virtual learning environments. Creative Education, 5(9), 657–671.CrossRefGoogle Scholar
  37. Norman, D. A. (2013). Design of everyday things: Revised and expanded. New York: Basic Books.Google Scholar
  38. Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. London: King’s College.Google Scholar
  39. Paavola, S., & Hakkarainen, K. (2014). Trialogical approach for knowledge creation. In S. C. Tan, H. J. So, & J. Yeo (Eds.), Knowledge creation in education. Springer Education Innovation Book Series (pp. 53–73). Singapore: Springer.Google Scholar
  40. Papert, S. (1996). Computers in the classroom: Agents of change. The Washington Post Education Review Sunday, October 27, 1996.Google Scholar
  41. Papert, S. (1997). Why school reform is impossible. The Journal of the Learning Sciences, 6(4), 417–427. Accessed February 25, 2017.
  42. Papert, S., & Harel, I. (1991). Situating constructionism. Accessed February 25, 2017.
  43. Patton, M. Q. (2002). Qualitative research and evaluation methods. Thousand Oaks, CA: Sage.Google Scholar
  44. Piaget, J. (1932/1962). The moral judgement of the child. Glencoe, IL: The Free Press. Accessed May 20, 2017.
  45. Pöllänen, S. (2009). Contextualising craft: Pedagogical models for craft education. The International Journal of Art and Design Education, 28(3), 249–260.CrossRefGoogle Scholar
  46. Pratt IMARI Lab. Pratt Institute, USA. Accessed January 23, 2017.
  47. Puurula, A. (1999). Taideaineiden opettaja monikulttuuriseksi muuttuvassa koulussa [Art teacher in multicultural school]. In A. Puurula (Ed.), Moni- ja interkulttuurinen taidekasvatus, 9–48. Studia Paedagogica 21. Helsinki: University of Helsinki.Google Scholar
  48. Rantala, J., Salminen, J., & Säntti, J. (2010). Teorian ja käytännön ristiaallokossa – luokanopettajan koulutuksen akatemisoituminen ja sen heijastuminen opettajaksi opiskelevien praktisiin valmiuksiin. In Teoksessa A. Kallioniemi, A. Toom, M. Uban, & H. Linnansaari (toim.), Akateeminen luokanopettajakoulutus: 30 vuotta teoriaa, käytäntöä ja maistereita (s. 51–76). Jyväskylä: Suomen kasvatustieteellinen seura.Google Scholar
  49. Rönkä, M.-L., & Aerila, J.-A. (2014). Children designing a soft toy: An LCE model as an application of the experiential learning during the holistic craft process. Techne Series A, 22(1), 44–58.Google Scholar
  50. Rosenfeld-Harverson, E., & Sheridan, K. (2014). The maker movement in education. Harvard Educational Review, 84(4), 495–504.CrossRefGoogle Scholar
  51. Sadik, A. (2008). Digital storytelling: A meaningful technology-integrated approach for engaged studentlearning. Educational Technology Research & Development, 56, 487–506.CrossRefGoogle Scholar
  52. Sarkar Arani, M. R. (2008). Japan’s National Curriculum Reforms: Focus on Integrated Curriculum Approach. Accessed May 3, 2017.
  53. Sawyer, R. K. (2014). How to transform schools to foster creativity. Accessed May 12, 2017.
  54. Seitamaa-Hakkarainen, P., & Hakkarainen, K. (2017). Learning by making. In K. Peppler (Ed.), The SAGE encyclopedia of out-of-school learning (pp. 421–424). Thousand Oaks: Sage Publications.Google Scholar
  55. Seitamaa-Hakkarainen, P., Viilo, M., & Hakkarainen, K. (2010). Learning by collaborative design: Technology enhanced knowledge practices. International Journal of Technology and Design Education, 20, 109–136.CrossRefGoogle Scholar
  56. Siegel, D. (2008). Interviewed by Jon Carlson. The Journal of Individual Psychology, 64(1), 67–82.Google Scholar
  57. Simola, H. 1988. Kognitiivinen oppimiskäsitys, opettajien täydennyskoulutus ja koulun todellisuus [Cognition, Teachers’ in-Service Education and Reality of School]. Raportti elämänkatsomustiedon opetuksen kehittämiskokeilusta Vantaalla 1985–1987. Turun yliopiston Kasvatustieteiden tiedekunta. Julkaisusarja A: 126. Turku: University of Turku.Google Scholar
  58. Smart Textiles Design Lab. Swedish School of Textiles. (2017). University of Borås, Sweden. Accessed January 23, 2017.
  59. Technical Research Centre of Finland. (2001). Kemiantekniikan asiakaslehti Neoa 2/2001.Google Scholar
  60. Technology Lab/University of Borås. Accessed January 13, 2017.
  61. Tulevaisuusvaliokunta (2013). Tulevaisuuden koulu [Future school]. A publication of the Committee for the Future in Finland, 8/13. Helsinki: Committee for the future.Google Scholar
  62. Tuomi, J., & Sarajärvi, A. (2009). Laadullinen tutkimus ja sisällönanalyysi [Qualitative research and content analysis]. Helsinki: Tammi.Google Scholar
  63. Unesco. (2013). Glossary of Curriculum Terminology. (International Bureau of Education. Interdisciplinary approach. Accessed January 13, 2017.
  64. Uusikylä, K., & Atjonen, P. (2005). Didaktiikan perusteet [Basics of didactics]. Helsinki: WSOY.Google Scholar
  65. Viilo, M., Seitamaa-Hakkarainen, P., & Hakkarainen, K. (2011). Infrastructures for technology-supported collective inquiry learning in science. In Karen Littleton, Eileen Scanlon, & Mike Sharples (Eds.), Orchestrating inquiry learning: Contemporary perspectives on supporting scientific inquiry learning 2011 (pp. 128–145). London: Routledge.Google Scholar
  66. Visanti, M.-L. (2007). Lähteen osahankkeiden innovatiivisia malleja ja vakiinnuttamisen haasteita. In M.-L. Visanti, H. Järnefelt, & P. Bäckman (Eds.), Luovuuspedagogiikka [Creative education] (pp. 42–50). Helsinki: Educational Board of Finland.Google Scholar
  67. Vygotsky, L. S. (1931/1997). The history of the development of higher mental functions. In R. W. Rieber (Ed.), The collected works of L. S. Vygotsky, (Vol. 4, pp. 97–119). New York: Plenum.Google Scholar
  68. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.Google Scholar
  69. Vygotsky, L. S. (1987). Thinking and speech (N. Minick, Trans.). In R. W. Reiber (Ed.), The collected works of L. S. Vygotsky (Vol. 3, pp. 37–285). New York: Plenum Press.Google Scholar
  70. Whittaker, D. (2014). The impact and legacy of educational sloyd. Head and hands in harness. New York: Routledge.Google Scholar
  71. Wilenius, M. (2015). Tulevaisuuskirja. Metodi seuraavan aikakauden ymmärtämiseen [Book of the future. Method to understand the new era]. Helsinki: Otava.Google Scholar
  72. Wilson, E. (1999). Consilience. The unity of knowledge. New York: Random House.Google Scholar

Copyright information

© Springer Nature B.V. 2017

Authors and Affiliations

  1. 1.University of HelsinkiHelsinkiFinland

Personalised recommendations