Advertisement

Thyroid eye disease: current and potential medical management

  • Jessica M. Pouso-DizEmail author
  • Jose M. Abalo-Lojo
  • Francisco Gonzalez
Review
  • 43 Downloads

Abstract

Introduction

Thyroid eye disease (TED) is the most frequent extra-thyroid manifestation of Graves’ disease and it is more frequent in middle age and in female gender. Nowadays, the causal mechanisms of this disease are not completely understood, but the current available studies suggest that the main causative factor is the thyroid stimulating hormone receptor.

Materials and methods

To collect reports on TED medical management, a thorough literature search was performed in PubMed database. An additional search was made in Google Scholar to complete the collected items.

Results

Among the indentified risk factors, tobacco habit is the most relevant. The main criteria to choose a suitable treatment are the activity and severity of the disease. Support measures can be used to improve the patient’s symptoms in any phase of the disease. There is a large number of drugs proposed to manage TED, although with different reported rates of success.

Conclusions

Currently, the drugs of choice are corticosteroids in moderate-to-severe and in sight-threatening forms. The main problem of corticosteroids is their spectrum of side effects. Therefore, other alternatives are being suggested for medical management of this disease. The efficacy of these alternatives remains unclear.

Keywords

Thyroid eye disease Graves’ disease TSHR Corticosteroids 

Notes

Acknowledgements

This work has received financial support from ISCIII (RD16/0008/0003) cofounded by European Regional Development Fund (FEDER), and Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia (Centro Singular de Investigación de Galicia Acreditación 2016–2019, ED431G/05).

Funding

This study was funded by ISCIII (RD16/0008/0003) cofounded by European Regional Development Fund (FEDER), and Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia (Centro Singular de Investigación de Galicia Acreditación 2016–2019, ED431G/05).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

References

  1. 1.
    De Groot L, Chrousos G, Dungan K et al (2000) Graves’ disease and the manifestations of thyrotoxicosis. Endotext, South DartmouthGoogle Scholar
  2. 2.
    Abraham-Nordling M, Byström K, Törring O, Lantz M, Berg G, Calissendorf J et al (2011) Incidence of hyperthyroidism in Sweden. Eur J Endocrinol 165:899–905PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Barrio-Barrio J, Sabater A, Bonet-Farriol E, Velázquez-Villoria Á, Galofré J (2015) Graves’ ophthalmopathy: VISA vs EUGOGO classification, assessment, and management. J Ophthalmol 2015:249125PubMedPubMedCentralGoogle Scholar
  4. 4.
    Bartalena L, Baldeschi L, Bobodoris K, Eckstein A, Kahaly G, Marcocci C et al (2016) The 2016 European thyroid association/European Group on Graves’ Orbitopathy guidelines for the management of Graves’ orbitopathy. Eur Thyroid 5:9–26CrossRefGoogle Scholar
  5. 5.
    Briceño C, Gupta S, Douglas R (2013) Advances in the management of thyroid eye disease. Int Ophthalmol 53:93–101CrossRefGoogle Scholar
  6. 6.
    Rivera-Grana E, Lin P, Suhler E, Rosenbaum J (2015) Methotrexate as a corticosteroid-sparing agent for thyroid eye disease. J Clin Exp Ophthalmol 6:422PubMedPubMedCentralGoogle Scholar
  7. 7.
    Bartalena L (2013) Graves’ orbitopathy: imperfect treatments for a rare disease. Eur Thyroid J. 2:259–269PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Laurberg P, Berman D, Bülow Pedersen I, Andersen S, Carlé A (2012) Incidence and clinical presentation of moderate to severe graves’ orbitopathy in a Danish population before and after iodine fortification of salt. J Clin Endocrinol Metab 97:2325–2332PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    McKeag D, Lane C, Lazarus J, Baldeschi L, Boboridis K, Dickinson A et al (2007) Clinical features of dysthyroid optic neuropathy: a European Group on Graves’ Orbitopathy (EUGOGO) survey. Br J Ophthalmol 91:455–458PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wiersinga W (2007) Advances in treatment of active, moderate-to-severe Graves’ ophthalmopathy. Diabetes Endocrinol 5:134–142Google Scholar
  11. 11.
    Inaba H, Martin W, De Groot A, Qin S, De Groot L (2006) Thyrotropin receptor epitopes and their relation to histocompatibility leukocyte antigen-DR molecules in Graves’ disease. J Clin Endocrinol Metab 91:2286–2294PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Akamizu T, Mori T, Nakao K (1997) Pathogenesis of Graves’ disease: molecular analysis of anti-thyrotropin receptor antibodies. Endocr J 44:633–646PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Inaba H, De Groot L, Akamizu T (2016) Thyrotropin receptor epitope and human leukocyte antigen in Graves’ disease. Front Endocrinol (Lausanne) 7:120CrossRefGoogle Scholar
  14. 14.
    Iyer S, Bahn R (2012) Immunopathogenesis of Graves’ ophthalmopathy: the role of the TSH receptor. Pract Res Clin Endocrinol Metab 26:281–289CrossRefGoogle Scholar
  15. 15.
    Tsui S, Naik V, Hoa N, Hwang C, Afifiyan N, Sinha Hikim A et al (2008) Evidence for an association between thyroid-stimulating hormone and insulin-like growth factor 1 receptors: a tale of two antigens implicated in Graves’ disease. J Immunol 181:4387–4405CrossRefGoogle Scholar
  16. 16.
    Douglas R, Gianoukakis A, Kamat S, Smith T (2007) Aberrant expression of the insulin-like growth factor-1 receptor by T cells from patients with Graves’ disease may carry functional consequences for disease pathogenesis. J Immunol 178:3281–3287PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Douglas R, Naik V, Hwang C, Afifiyan N, Gianoukakis A, Sand D et al (2008) B cells from patients with Graves’ disease aberrantly express the IGF-1 receptor: implications for disease pathogenesis. J Immunol 181:5768–5774PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Smith T, Kahaly G, Ezra D, Fleming J, Dailey R, Tang R et al (2017) Teprotumumab for thyroid-associated ophthalmopy. N Engl J Med 376:1748–1761PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Khong J, McNab A, Ebeling P, Craig J, Selva D (2016) Pathogenesis of thyroid eye disease: review and update on molecular mechanisms. Br J Ophthalmol 100:142–150PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Mackay F, Browning J (2002) BAFF: a fundamental survival factor for B cells. Nat Rev Immunol 2:465–475PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Lied G, Berstad A (2011) Functional and clinical aspects of the B-cell-activating factor (BAFF): a narrative review. Scand J Immunol 73:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Leandro M, Cambridge G (2013) Expression of B cell activating factor (BAFF) and BAFF-biding receptors in rheumatoid arthritis. J Rheumathol 40:1247–1250CrossRefGoogle Scholar
  23. 23.
    Theodorou E, Nezos A, Antypa E, Ioakeimidis D, Koutsilieris M, Tektonidou M et al (2018) B-cell activating factor and related genetic variants in lupus related atherosclerosis. J Autoimmun 92:87–92PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Zhao Y, Li J, Wei B, Xu Z (2015) BAFF level increased in patients with autoimmune hemolytic anemia. Int J Clin Exp Med 8:2876–3882Google Scholar
  25. 25.
    van Steensel L, Dik W (2010) The orbital fibroblast: a key player and target for therapy in Graves’ ophthalmopathy. Orbit 29:202–206PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    van Steensel L, Hooijkaas H, Paridaens D, van de Bosch W, Kuijpers R, Drexhage H et al (2012) PDGF enhances orbital fibroblast responses to TSHR stimulating autoantibodies in Graves’ ophthalmopathy patients. J Clin Endocrinol Metab 97:944–953CrossRefGoogle Scholar
  27. 27.
    Virakul S, van Steensel L, Dalm V, Paridaens D, van Hagen P, Dik W (2014) Platelet-derived growth factor: a key factor in the pathogenesis of Graves’ ophthalmopathy and potential target for treatment. Eur Thyroid 3:217–226CrossRefGoogle Scholar
  28. 28.
    Dik W, Virakul S, van Steensel L (2016) Current perspectives on the role of orbital fibroblasts in the pathogenesis of Graves’ ophthalmopathy. Exp Eye Res 142:83–91PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Bahn R (2010) Graves’ ophthalmopathy. N Engl J Med 362:726–738PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Smith T (2010) Pathogenesis of Graves’ orbitopathy: a 2010 update. J Endocrinol 33:414–421Google Scholar
  31. 31.
    Mourist M, Prummel M, Wiersinga W, Koornneef L (1997) Clinical activity score as a guide in the management of patients with Graves’ ophthalmopathy. Clin Endocrinol (Oxf) 47:9–14CrossRefGoogle Scholar
  32. 32.
    Campi I, Vannucchi G, Salvi M (2016) Therapy of endocrine disease: endocrine dilemma: management of Graves’ orbitopathy. Eur J Endocrinol 175:117–133CrossRefGoogle Scholar
  33. 33.
    Salvi M (2012) EUGOGO Atlas: EUGOGO protocol for assessment of Graves’ orbitopathy and completion of case record form Milan: EUGOGOGoogle Scholar
  34. 34.
    Werner S (1969) Classification of the eye changes of Graves’ disease. Am J Ophthalmol 68:646–648PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Werner S (1977) Modification of the classification of the eye changes of Graves’ disease. Am J Ophthalmol 83:725–727PubMedCrossRefGoogle Scholar
  36. 36.
    Prummel M, Wiersinga W (1993) Smoking and risk of Graves’ disease. JAMA 169:479–482CrossRefGoogle Scholar
  37. 37.
    Wiersinga W (2013) Smoking and thyroid. Clin Endocrinol (Oxf) 79:145–151CrossRefGoogle Scholar
  38. 38.
    Bartalena L, Marcocci C, Tanda M, Manetti L, Dell’Unto E, Bartolomei M et al (1998) Cigarette smoking and treatment outcomes in Graves ophthalmopathy. Ann Intern Med 129:632–635PubMedCrossRefGoogle Scholar
  39. 39.
    Pfeilschifter J, Ziegler R (1996) Smoking and endocrine ophthalmopathy: impact of smoking severity and current vs lifetime cigarette consumption. Clin Endocrinol (Oxf) 45:477–481CrossRefGoogle Scholar
  40. 40.
    Eckstein A, Quadbeck B, Mueller G, Rettenmeier A, Hoermann R, Mann K et al (2003) Impact of smoking on the response to treatment of thyroid associated ophthalmopathy. Br J Ophthalmol 87:773–776PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bartalena L (2012) Prevention of Graves’ ophthalmopathy. Best Pract Res Clin Endocrinol Metab 26:371–379PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Krassas G, Segni M, Wiersinga W (2005) Childhood Graves’ ophthalmopathy: results of a European questionnaire study. Eur J Endocrinol 153:515–521PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Eckstein A, Lösch C, Glowacka D, Schott M, Mann K, Esser J et al (2009) Euthyroid and primarily hypothyroid patients develop milder and significantly more asymmetrical Graves’ ophthalmopathy. Br J Ophthalmol 93:1052–1056PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Termote K, Decallonne B, Mombaerts I (2014) The influence of prior hyperthyroidism on euthyroid Graves’ ophthalmopathy. J Ophthalmol 22:426898Google Scholar
  45. 45.
    Perros P, Hegedüs L, Bartalena L, Marcocci C, Kahaly G, Baldeschi L et al (2017) Graves’ orbitopathy are a rare disease in Europe: a European Group on Graves’ Orbitopathy (EUGOGO) position statement. Orphanet J Rare Dis 12:72PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bartley G, Fatourechi V, Kadrmas E, Jacobsen S, Ilstrup D, Garrity J et al (1996) Clinical features of Graves’ ophthalmopathy in an incidence cohort. Am J Ophthalmol 121:284–290PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Bartalena L, Marccocci C, Bogazzi F, Panicucci M, Lepri A, Pinchera A (1989) Use of corticosteroids to prevent progression of Graves’ ophthalmopathy after radioiodine therapy for hyperthyroidism. N Engl J Med 321:1349–1352PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Bartalena L, Marcocci C, Bogazzi F, Manetti L, Tanda M, Dell’Unto E et al (1998) Relation between therapy for hyperthyroidism and the course of Graves’ ophthalmopathy. N Engl J Med 338:73–78PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lai A, Sassi L, Compri E, Marino F, Sivelli P, Piantanida E et al (2010) Lower dose prednisone prevents radioiodine-associated exacerbation of initially mild or absent graves’ orbitopathy: a retrospective cohort study. J Clin Endocrinol Med 95:1333–1337CrossRefGoogle Scholar
  50. 50.
    Negro R, Attanasio R, Grimaldi F, Guglielmi R, Papini E, AME (Associazione Medici Endocrinology) et al (2016) A 2015 Italian survey of clinical practice patterns in the management of Graves’ disease: comparison with European and North American surveys. Eur Thyroid J 5:112–119PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Vannucchi G, Campi I, Covelli D, Dazzi D, Currò N, Simonetta S et al (2009) Graves’ orbitopathy activation after radioactive iodine therapy with and without steroid prophylaxis. J Clin Endocrinol Metab 94:3381–3386PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Träisk F, Tallstedt L, Abraham-Nordling M, Andersson T, Berg G, Calissendorff J et al (2009) Thyroid-associated ophthalmopathy after treatment for Graves’ hyperthyroidism with antithyroid drugs or iodine-131. J Clin Endocrinol Metab 94:3700–3707PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Tallstedt L, Lundell G, Blomgren H, Bring J (1994) Does early administration of thyroxine reduce the development of Graves’ ophthalmopathy after radioiodine treatment? Eur J Endocrinol 130:494–497PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Perros P, Kendall-Taylor P, Neoh C, Frewin S, Dickinson J (2005) A prospective study of the effects of radioiodine therapy for hyperthyroidism in patients with minimally active graves’ ophthalmopathy. J Clin Endocrinol Metab 90:5321–5323PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Watanabe N, Noh J, Kozaki A, Iwaku K, Sekiya K, Kosuga Y et al (2015) Radioiodine-associated exacerbation of Graves’ orbitopathy in the Japanese population: randomized prospective study. J Clin Endocrinol Metab 100:2700–2708PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Gerding M, van der Meer J, Broenink M, Bakker O, Wiersinga W, Prummel M (2000) Association of thyrotropin receptor antibodies with the clinical features of Graves’ ophthalmopathy. Clin Endocrinol (Oxf) 52:267–271CrossRefGoogle Scholar
  57. 57.
    Eckstein A, Plicht M, Lax H, Neuhäuser M, Mann K, Lederbogen S et al (2006) Thyrotropin receptor autoantibodies are independent risk factors for Graves’ ophthalmopathy and help to predict severity and outcome of disease. J Clin Endocrinol Metab 91:3464–6470PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Marcocci C, Kahaly G, Krassas G, Bartalena L, Prummel M, Stahl M et al (2011) Selenium and the course of mild Graves’ orbitopathy. N Engl J Med 364:1920–1931PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Morgenstern K, Evanchan J, Foster J, Cahill K, Burns J, Holck D et al (2004) Botulinum toxin type a for dysthyroid upper eyelid retraction. Ophthalmic Plast Reconstr Surg 20:181–185PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Costa P, Saraiva F, Pereira I, Monteiro M, Matayoshi S (2009) Comparative study of Botox injection treatment for upper eyelid retraction with 6-month follow-up in patients with thyroid eye disease in the congestive or fibrotic stage. Eye (London) 23:767–773CrossRefGoogle Scholar
  61. 61.
    Nava Castañeda A, Tovilla Canales J, Garnica Hayashi L, Velasco Y Levy A (2017) Management of upper eyelid retraction associated with dysthyroid orbitopathy during the acute inflammatory phase with botulinum toxin type A. J Fr Ophtthalmol 40:279–284CrossRefGoogle Scholar
  62. 62.
    Marcocci C, Marinò M (2012) Treatment of mild, moderate-to-severe and very severe Graves’ orbitopathy. Best Pract Res Clin Endocrinol Metab 26:325–337PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Bhatti M, Dutton J (2014) Thyroid eye disease: therapy in the active phase. Best Pract Res Clin Endocrinol Metab 34:186–197Google Scholar
  64. 64.
    Kumari R, Chandra Saha B (2018) Advances in the management of thyroid eye disease: an overview. Int Ophthalmol 38:2247–2255PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Duntas L, Benvenga S (2015) Selenium: an element for life. Endocrine 48:756–775PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Wu Q, Rayman M, Lv H, Schomburg L, Cui B, Gao C et al (2015) Low population selenium status is associated with increased prevalence of thyroid disease. J Clin Endocrinol Metab 100:4037–4047PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Vunta H, Davis F, Palempalli U, Bhat D, Arner R, Thompson J et al (2007) The anti-inflammatory effects of selenium are mediated through 15-deoxy-Delta 12,14-prostaglandin J2 in macrophages. J Biol Chem 282:17964–17973PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Saranac L, Zivanovic S, Bjelakovic B, Stamenkovic H, Novak M, Kamenov B (2011) Why is the thyroid so prone to autoimmune disease? Horm Res Paediatr 75:157–165PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Schomburg L (2011) Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat Rev Endocrinol 8:160–171PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Ventura M, Melo M, Carrilho F (2017) Selenium and thyroid disease: from pathophysiology to treatment. Int J Endocrinol 2017:1297658PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Carlson B, Yoo M, Shrimali R, Irons R, Gladyshev V, Hatfield D et al (2010) Role of selenium-containing proteins in T-cell and macrophage function. Proc Nutr Soc 69:300–310PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Vrca V, Skerb F, Cepelak I, Romic Z, Mayer L (2004) Supplementation with antioxidants in the treatment of Graves’ disease; the effect on glutathione peroxidase activity and concentration of selenium. Clin Chim Acta 341:55–63PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Kahaly G, Riedl M, König J, Diana T, Schomburg L (2017) Double-blind, placebo-controlled, randomized trial of selenium in Graves’hiperthyroidism. J Clin Endocrinol Metab 102:4333–4341PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Strianese D (2017) Update of Graves’ disease: advances in treatment of mild, moderate and severe thyroid eye disease. Curr Opin Ophthalmol 28:505–513PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Stranges S, Navas-Acien A, Rayman M, Guallar E (2010) Selenium status and cardiometabolic health: state of evidence. Nutr Cardiovasc Dis 20:754–760CrossRefGoogle Scholar
  76. 76.
    Rayman M (2012) Selenium and human health. Lancet 379:12561268CrossRefGoogle Scholar
  77. 77.
    Rocourt C, Cheng W (2013) Selenium supranutrition: are the potential benefits of chemoprevention outweighed by the promotion of diabetes and insulin resistance? Nutrients 5:1349–1365PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Heufelder A, Wenzel B, Bahn R (1993) Glucocorticoids modulate the synthesis and expression of a 72 kDa heat shock protein in cultured Graves’ retroocular fibroblast. Acta Endocrinol (Copenh) 128:41–50CrossRefGoogle Scholar
  79. 79.
    Krassas G, Heufelder A (2001) Immunosuppressive therapy in patients with thyroid eye disease: an overview of current concepts. Eur J Endocrinol 144:311–318PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Zang S, Ponto K, Kahaly G (2011) Clinical review: intravenous glucocorticoids for Graves’ orbitopathy: efficacy and morbidity. J Clin Endocrinol Metab 96:320–332PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Ayabe R, Rootman D, Hwang C, Ben-Artzi A, Golberg R (2014) Adalimumab as steroid-sparing treatment of inflammatory-stage thyroid eye disease. Ophthal Plast Reconstr Surg 30:415–419PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Stiebel-Kalish H, Robenshtok E, Hasanreisoglu M, Ezrachi D, Shimon I, Leibovici L (2009) Treatment modalities for Graves’ ophthalmopathy: systematic review and metaanalysis. J Clin Endocrinol Metab 94:2708–2716PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Mou P, Jiang L, Zhang Y, Li Y, Lou H, Zeng C et al (2015) Common immunosuppressive monotherapy for Graves’ ophthalmopathy: a meta-analysis. PLoS ONE 10:e0139544PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kahaly G, Pitz S, Hommel G, Dittmar M (2005) Randomized, single blind trial of intravenous versus oral steroid monotherapy in Graves’ orbitopathy. J Clin Endocrinol Metab 90:5234–5240PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Bartalena L, Pinchera A, Marcocci C (2000) Management of Graves’ ophthalmopathy: reality and perspectives. Endocr Rev 21:168–199PubMedPubMedCentralGoogle Scholar
  86. 86.
    Sisti E, Coco B, Menconi F, Leo M, Rocchi R et al (2015) Intravenous glucocorticoid therapy for Graves’ ophthalmopathy and acute liver damage: an epidemiological study. Eur J Endocrinol 172:269–276PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Bartalena L, Krassas G, Wiersinga W, Marcocci C, Salvi M et al (2012) Efficacy and safety of three different cumulative doses of intravenous methylprednisolone for moderate to severe and active Graves’ orbitopahty. J Clin Endocrinol Metab 97:4454–4463PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Covelli D, Vannucchi G, Campi I, Currò N, D’Ambrosio R, Maggioni M et al (2015) Statins may increase the risk of liver dysfunction in patients treated with steroids for active Graves’ orbitopathy. J Clin Endocrinol Metab 100:1731–1737PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Sisti E, Menconi F, Leo M, Profilo M, Mautone T, Mazzi B et al (2015) Long-term outcome of Graves’ orbitopathy following high-dose intravenous glucocorticoids and orbital radiotherapy. J Endocrinol Invest 38:661–668PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Macchia P, Bagattini M, Lupoli G, Vitale G, Fenzi G (2001) High-dose intravenous corticosteroid therapy for Graves’ ophthalmopathy. J Endocrinol Invest 24:152–158PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Smith J, Rosenbaum J (2001) A role methotrexate in the management of non-infectious orbital inflammatory disease. Br J Ophthalmol 85:1200–1224Google Scholar
  92. 92.
    Emon M, Kodamullil A, Karki R, Younesi E, Hofmann-Apitius M (2017) Using drugs as molecular probes: a computational chemical biology approach in neurodegenerative disease. J Alzheimers Dis 56:677–686PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Prummel M, Mourits M, Berghout A, Krenning E, van der Gaag R, Koornneef L et al (1989) Prednisone and cyclosporine in treatment of severe Graves’ ophthalmopathy. N Engl J Med 321:1353–1359PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Kahaly G, Schrezenmeir J, Krause U, Schweikert B, Meuer S, Muller W et al (1986) Ciclosporin and prednisone v. prednisone in treatment of Graves’ ophthalmopathy: a controlled, randomized and prospective study. Eur J Clin Invest 16:415–422PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Engel P, Gómez-Puerta J, Ramos-Casals M, Lozano F, Bosch X (2011) Therapeutic targeting of B cells for rheumatic autoimmune disease. Pharmacol Rev 63:127–156PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Salvi M, Vannucchi G, Currò N, Introna M, Rossi S, Bonara P et al (2012) Small dose of Rituximab for Graves’ orbitopathy: new insights into the mechanism of action. Arch Ophthalmol 130:122–124PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Salvi M, Vannucchi G, Beck-Peccoz P (2013) Potential utility of rituximab for Graves’ orbitopathy. J Clin Endocrinol Metab 98:4291–4299PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Salvi M, Vannucchi G, Currò N, Campi I, Covell D, Dazzi D et al (2015) Efficacy of B-cell targeted therapy with rituximab in patients with active moderate to severe Graves’ orbitopathy: a randomized controlled study. J Clin Endocrinol Metab 100:422–431PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Stan M, Garrity J, Carraza Leon B, Prabin T, Bradley E, Bahn R (2015) Randomized controlled trial of rituximab in patients with Graves’ orbitopathy. J Clin Endocrinol Metab 100:432–441PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Stan M, Salvi M (2017) Management of endocrine disease: rituximab therapy for Graves’ orbitopathy—lessons from randomized control trials. Eur J Endocrinol 176:101–109CrossRefGoogle Scholar
  101. 101.
    van Vollenhoven R, Emery P, Bingham CO, Keystone E, Fleischmann R, Furst D et al (2013) Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann Rheum Dis 72:1496–1502PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Descotes J (2009) Immunotoxicity of monoclonal antibodies. MAbs 1:104–111PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Chen H, Shan S, Mester T, Wei Y, Douglas R (2015) TSH-Mediated TNFα production in human fibrocytes is inhibited by teprotumumab, an IGF-1R antagonist. PLoS ONE 10:e0130322PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Donahue K, Gartlehner G, Jonas D, Lux L, Thieda P, Jonas B et al (2008) Systematic review: comparative effectiveness and harms of disease-modifying medications for rheumatoid arthritis. Ann Intern Med 148:124–134PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Komorowski J, Jankiewicz-Wika J, Siejka A, Lawnicka H, Kłysik A, Goś R et al (2007) Monoclonal anti-TNFalpha antibody (infliximab) in the treatment of patient with thyroid associated ophthalmopathy. Klin Oczna 109:457–460PubMedPubMedCentralGoogle Scholar
  106. 106.
    Paridaens D, van den Bosch W, van der Loos T, Krenning E, van Hagen P (2005) The effect of etanercept on Graves’ ophthalmopathy: a pilot study. Eye (Lond) 19:1286–1289CrossRefGoogle Scholar
  107. 107.
    de-Pablo-Gómez-de-Liaño L, Fernández-Vigo J, Troyano-Rivas J, Niño-Rueda C, Romo-López Á, Gómez de Liaño R (2018) Response to tocilizumab treatment in Graves’ ophthalmopathy by measuring rectus muscle thickness and chemosis using optical coherence tomography. Arch Soc Esp Oftalmol 93:386–391PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Pérez-Moreiras J, Alvarez-López A, Gómez E (2014) Treatment of active corticosteroid-resistant graves’ orbitopathy. Plast Reconstr Surg 30:162–167CrossRefGoogle Scholar
  109. 109.
    Pérez-Moreiras J, Gomez-Reino J, Maneiro J, Perez-Pampin E, Romo Lopez A, Rodríguez Alvarez F et al (2018) Efficacy of tocilizumab in patients with moderate to severe corticosteroid resistant graves orbitopathy: a randomized clinical trial. Am J Ophthalmol 195:181–190PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Koike T, Harigai M, Inokuma S, Ishiguro N, Ryu J, Takeuchi T et al (2014) Effectiveness and safety of tocilizumab: postmarketing surveillance of 7901 patients with rheumatoid arthritis in Japan. J Rheumatol 41:15–23PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Chen H, Mester T, Raychaudhuri N, Kauh C, Gupta S, Smith T et al (2014) Teprotumumab, an IGF-1R blocking monoclonal antibody inhibits TSH and IGF-1 action in fibrocytes. J Clin Endocrinol Metab 99:1635–1640CrossRefGoogle Scholar
  112. 112.
    Ye X, Bo X, Hu X, Cui H, Lu B, Shao J et al (2017) Efficacy and safety of mycophenolate mofetil in patients with active moderate-severe Graves’ orbitopathy. Clin Endocrinol (Oxf) 86:247–255CrossRefGoogle Scholar
  113. 113.
    Kahaly G, Riedl M, König J, Pitz S, Ponto K, Diana T et al (2018) Mycophenolate plus methylprednisolone versus methylprednisolone alone in active, moderate-to-severe Graves’ orbitopathy (MINGO): a randomised, observer-masked, multicentre trial. Lancet Diabetes Endocrinol 6:287–298PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Seitz M (1999) Molecular and cellular effects of methotrexate. Curr Opin Rheumatol 11:226–232PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Bartalena L, Tanda M, Medea A, Marcocci C, Pinchera A (2002) Novel approaches to the management of graves’ ophthalmopathy. Hormones (Athens) 1:76–90CrossRefGoogle Scholar
  116. 116.
    Sipkova Z, Insull E, David J, Turner H, Keren S, Norris J (2018) Early use of steroid-sparing agents in the inactivation of moderate-to-severe active thyroid eye disease: a step-down approach. Clin Endocrinol (Oxf) 89:834–839CrossRefGoogle Scholar
  117. 117.
    Pasquali D, Vassallo P, Esposito D, Bonavolontà G, Bellastella A, Sinisi A (2000) Somatostatin receptor gene expression and inhibitory effects of octreotide on primary cultures of orbital fibroblasts from Graves’ ophthalmopathy. J Mol Endocrinol 25:63–71PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Stan M, Garrity J, Bradley E, Woog J, Bahn M, Brennan M et al (2006) Randomized, double-blind, placebo-controlled trial of long-acting release octreotide for treatment of Graves’ ophthalmopathy. J Clin Endocrinol Metab 91:4817–4824PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Tanda L, Bartalena L (2006) Currently available somatostatin analogs are not good for Graves’ orbitopathy. J Endocrinol Invest 29:389–390PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Chang T, Liao S (2006) Slow-release lanreotide in Graves’ ophthalmopathy: a double-blind randomized, placebo-controlled clinical trial. J Endocrinol Invest 29:413–422PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Bruns C, Lewis I, Briner U, Meno-Tetang G, Weckbecker G (2002) SOM 230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and unique antisecretory profile. Eur J Endocrinol 146:707–716PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Tahara S, Murakami M, Kaneko T, Shimatsu A (2017) Efficacy and safety of long-acting pasireotide in Japanese patients with acromegaly or pituitary gigantism: results from a multicenter, open-label, randomized, phase 2 study. Endocrinol J 64:735–747Google Scholar
  123. 123.
    Gerding M, van der Zant F, van Royen E, Koornneef L, Krenning E, Wiersinga W et al (1999) Octreotide-scintigraphy is a disease-activity parameter in Graves’ ophthalmopathy. Clin Endocrinol (Oxf) 50:373–379CrossRefGoogle Scholar
  124. 124.
    Tang F, Chen X, Mao Y, Wan S, Ai S, Yang H et al (2017) Orbital fibroblast of Graves’ orbitopathy stimulated with proinflammatory cytokines promote B cell survival by secreting BAFF. Mol Cell Endocrinol 446:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Shen S, Chan A, Sfikakis P, Hsiu Ling A, Detorakis E, Boboridis K et al (2013) B-cell targeted therapy with rituximab for thyroid eye disease: closer to the clinic. Surv Ophthalmol 58:252–265PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    McCoy A, Kim D, Gillespie E, Atkins S, Smith T, Douglas R (2014) Rituximab (Rituxan) therapy for severe thyroid-associated ophthalmopathy diminishes IGF-1R (+) T cells. Clin Endocrinol Metab 99:1294–1299CrossRefGoogle Scholar
  127. 127.
    van Vollenhoven R, Wax S, Li Y, Tak P (2015) Safety and efficacy of atacicept in combination with rituximab for reducing the signs and symptoms of rheumatoid arthritis: a phase II, randomized, double-blind, placebo-controlled pilot trial. Arthritis Reumatol 67:2828–2836CrossRefGoogle Scholar
  128. 128.
    Lenert A, Lenert P (2015) Current and emerging treatment options for ANCA-associated vasculitis: potential role of belimumab and other BAFF/APRIL targeting agents. Drug Des Dev Ther 9:333–347CrossRefGoogle Scholar
  129. 129.
    Hewett K, Sanders D, Grove R, Broderick C, Rudo T, Bassiri A et al (2018) Randomized study of adjunctive belimumab in participants with generalized myasthenia gravis. Neurology 90:1425–1434CrossRefGoogle Scholar
  130. 130.
    van Steensel L, Paridaens D, van Meurs M, van Hagen P, van den Bosch W, Kuijpers R et al (2012) Orbit-infiltrating mast cells, monocytes and macrophages produce PDGF isoforms that orchestrate orbital fibroblast activation in Graves’ ophthalmopathy. J Clin Endocrinol Metab 97:400–408CrossRefGoogle Scholar
  131. 131.
    van Steensel L, Paridaens D, Schrijver B, Dingjan G, van Daele P, van Hagen P et al (2009) Imatinib mesylate and AMN107 inhibit PDGF-signaling in orbital fibroblasts: a potential treatment for Graves’ ophthalmopathy. Invest Ophthalmol Vis Sci 50:3091–3098PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Kim T, Rea D, Schwarz M, Grille P, Nicolini F, Rosti G et al (2013) Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or imatinib. Leukemia 27:1316–1321PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Li H, Fitchett C, Kozdon K, Jayaram H, Rose G, Bailly M et al (2014) Independent adipogenic and contractile properties of fibroblasts in Graves’ orbitopathy: an in vitro model for the evaluation of treatments. PLoS ONE 9:e95586PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Borriello A, Caldarelli I, Basile M, Bencivenga D, Tramontano A, Perrotta S et al (2011) The tyrosine kinase inhibitor dasatinib induces a marked adipogenic differentiation of human multipotent mesenchymal stromal cells. PLoS ONE 6:e28555PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Virakul S, Dalm V, Paridaens D, van den Bosch W, Hirankarn N, van Hagen P et al (2014) The tyrosine kinase inhibitor dasatinib effectively blocks PDGF-induced orbital fibroblast activation. Graefes Arch Clin Exp Ophthalmol 252:1101–1109PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Zhang L, Grennan-Jones F, Draman M, Lane C, Morris D, Dayan C et al (2014) Possible targets for nonimmunosuppressive therapy of Graves’ orbitopathy. J Clin Endocrinol Metab 99:1183–1190CrossRefGoogle Scholar
  137. 137.
    Kurtz J, Ray-Coquard I (2012) PI3 kinase inhibitors in the clinic: an update. Anticancer Res 32:2463–2470PubMedPubMedCentralGoogle Scholar
  138. 138.
    Gershengorn M, Neumann S (2012) Update in TSH receptor agonists and antagonists. J Clin Endocrinol Metab 97:4287–4292PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Fleischmann R, Schechtman J, Bennett R, Handel M, Burmester G, Tesser J et al (2003) Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis: a large, international, multicenter, placebo-controlled trial. Arthritis Rheum 48:927–934PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Daifotis A, Koenig S, Chatenoud L, Herold K (2013) Anti-CD3 clinical trials in type 1 diabetes mellitus. Clin Immunol 149:268–278PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Rhiu S, Chae M, Lee E, Lee J, Yoon J (2014) Effect of tanshinone IIA in an in vitro model of Graves’ orbitopathy. Invest Ophthalmol Vis Sci 55:5900–5910PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Estcourt S, Hickey J, Perros P, Dayan C, Vaidya B (2009) The patient experience of services for thyroid eye disease in the United Kingdom: results of a nationwide survey. Eur J Endocrinol 16:483–487CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Department of Surgery and Medicosurgical Specialties and CIMUS, University of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Service of Ophthalmology and IDISComplejo Hospitalario Universitario de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations