Corneal sublayer thickness in patients with pseudoexfoliation syndrome evaluated by anterior segment optical coherence tomography

  • Abdulhakim TekceEmail author
  • Mehmet Gulmez
Original Paper



The aim of the study was to evaluate the thickness of each corneal sublayer in patients with pseudoexfoliation syndrome (PXS).


The study’s sample consisted of the 74 eyes of 74 patients with PXS (group 1) and the 80 eyes of 80 individuals without PXS (group 2). Each participant was performed anterior segment optical coherence tomography (AS-OCT) and Pentacam–Scheimpflug imaging. The thicknesses of corneal epithelium, Bowman’s layer, stroma, and Descemet membrane–endothelial complex were measured separately from the AS-OCT images, on the central, 2 mm superior and inferior of the cornea. Central corneal thickness (CCT), apical corneal thickness (ACT), thinnest corneal thickness (TCT), and corneal volume were also evaluated.


According to the measurements of corneal topography, in group 1 versus group 2, mean CCT (529.85 ± 32.33 µm vs 551.36 ± 39.12 µm, p < 0.001), mean ACT (532.21 ± 35.56 µm vs 552.26 ± 49.24 µm, p < 0.001), and mean TCT (527.54 ± 51.45 µm vs 546.20 ± 49.20 µm, p = 0.002) were significantly thinner in group 1. In AS-OCT, the thickness of the epithelium, stroma, and Descemet membrane–endothelial complex in the central, inferior, and superior cornea were significantly thinner in group 1 than in group 2. However, the thickness of Bowman’s layer did not significantly differ between the groups.


Our results indicate that all corneal sublayers except Bowman’s layer were thinner in eyes with PXS than in healthy ones. Therefore, caution should be exercised for corneal involvement in patients with PXS.


Pseudoexfoliation syndrome Anterior segment optical coherence tomography Corneal sublayer Epithelium Stroma 



No author has a financial or proprietary interest in any material or method mentioned.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.


  1. 1.
    Naumann GO, Schlötzer-Schrehardt U, Küchle M (1998) Pseudoexfoliation syndrome for the comprehensive ophthalmologist: intraocular and systemic manifestations. Ophthalmology 105(6):951–968CrossRefGoogle Scholar
  2. 2.
    Jonasson F, Damji K, Arnarsson A, Sverrisson T, Wang L, Sasaki H, Sasaki K (2003) Prevalence of open-angle glaucoma in Iceland: Reykjavik eye study. Eye 17(6):747CrossRefGoogle Scholar
  3. 3.
    Ringvold A (1999) Epidemiology of the pseudo-exfoliation syndrome. A review. Acta Ophthalmol Scand 77(4):371–375CrossRefGoogle Scholar
  4. 4.
    Ritch R, Schlötzer-Schrehardt U, Konstas AG (2003) Why is glaucoma associated with exfoliation syndrome? Prog Retin Eye Res 22(3):253–275CrossRefGoogle Scholar
  5. 5.
    Terracciano L, Cennamo M, Favuzza E, Julia L, Caporossi O, Mencucci R (2018) An in vivo confocal microscopy study of corneal changes in pseudoexfoliation syndrome. Eur J Ophthalmol 29:555–560. CrossRefPubMedGoogle Scholar
  6. 6.
    Kocabeyoglu S, Mocan MC, Irkec M, Karakaya J (2016) In vivo confocal microscopic evaluation of corneas in patients with exfoliation syndrome. J Glaucoma 25(2):193–197CrossRefGoogle Scholar
  7. 7.
    Zheng X, Shiraishi A, Okuma S, Mizoue S, Goto T, Kawasaki S, Uno T, Miyoshi T, Ruggeri A, Ohashi Y (2011) In vivo confocal microscopic evidence of keratopathy in patients with pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci 52(3):1755–1761CrossRefGoogle Scholar
  8. 8.
    Zheng X, Sakai H, Goto T, Namiguchi K, Mizoue S, Shiraishi A, Sawaguchi S, Ohashi Y (2011) Anterior segment optical coherence tomography analysis of clinically unilateral pseudoexfoliation syndrome: evidence of bilateral involvement and morphologic factors related to asymmetry. Invest Ophthalmol Vis Sci 52(8):5679–5684CrossRefGoogle Scholar
  9. 9.
    Fernández-Vigo JI, García-Feijóo J, Martínez-de-la-Casa JM, García-Bella J, Arriola-Villalobos P, Fernández-Pérez C, Fernández-Vigo JÁ (2016) Fourier domain optical coherence tomography to assess the iridocorneal angle and correlation study in a large Caucasian population. BMC Ophthalmol 16(1):42CrossRefGoogle Scholar
  10. 10.
    Imamoglu S, Sevim MS, Alpogan O, Ercalik NY, Kumral ET, Pekel G, Bardak H (2016) In vivo biometric evaluation of Schlemm’s canal with spectral-domain optical coherence tomography in pseuduexfoliation glaucoma. Acta Ophthalmol (Copenh) 94(8):e688–e692CrossRefGoogle Scholar
  11. 11.
    Rabsilber TM, Khoramnia R, Auffarth GU (2006) Anterior chamber measurements using Pentacam rotating Scheimpflug camera. J Cataract Refract Surg 32(3):456–459CrossRefGoogle Scholar
  12. 12.
    Urbaniak D, Seredyka-Burduk M, Błoch W, Malukiewicz G, Kałuzny BJ (2018) Scheimpflug camera measurement of optical density of the corneal epithelium, stroma, and endothelium in patients with pseudoexfoliation syndrome. Med Sci Monit Int Med J Exp Clin Res 24:5826Google Scholar
  13. 13.
    Gunes A, Yigit M, Tok L, Tok O (2016) Evaluation of anterior segment parameters in patients with pseudoexfoliation syndrome using Scheimpflug imaging. Arq Bras Oftalmol 79(3):177–179CrossRefGoogle Scholar
  14. 14.
    Martone G, Casprini F, Traversi C, Lepri F, Pichierri P, Caporossi A (2007) Pseudoexfoliation syndrome: in vivo confocal microscopy analysis. Clin Exp Ophthal 35(6):582–585CrossRefGoogle Scholar
  15. 15.
    Naumann GO, Schlötzer-Schrehardt U (2000) Keratopathy in pseudoexfoliation syndrome as a cause of corneal endothelial decompensation. Ophthalmology 107(6):1111–1124CrossRefGoogle Scholar
  16. 16.
    Yüksel N, Emre E, Pirhan D (2016) Evaluation of corneal microstructure in pseudoexfoliation syndrome and glaucoma: in vivo scanning laser confocal microscopic study. Curr Eye Res 41(1):34–40CrossRefGoogle Scholar
  17. 17.
    Zimmermann N, Wünscher M, Schlötzer-Schrehardt U, Erb C (2014) Corneal endothelial cell density and its correlation with the severity of pseudoexfoliation. Klin Monbl Augenheilkd 231(2):158–163CrossRefGoogle Scholar
  18. 18.
    Schlötzer-Schrehardt U, Jr Lommatzsch, Küchle M, Konstas AG, Naumann GO (2003) Matrix metalloproteinases and their inhibitors in aqueous humor of patients with pseudoexfoliation syndrome/glaucoma and primary open-angle glaucoma. Invest Ophthalmol Vis Sci 44(3):1117–1125CrossRefGoogle Scholar
  19. 19.
    Patel SV, McLaren JW, Hodge DO, Bourne WM (2001) Normal human keratocyte density and corneal thickness measurement by using confocal microscopy in vivo. Invest Ophthalmol Vis Sci 42(2):333–339PubMedGoogle Scholar
  20. 20.
    Sein J, Galor A, Sheth A, Kruh J, Pasquale LR, Karp CL (2013) Exfoliation syndrome: new genetic and pathophysiologic insights. Curr Opin Ophthalmol 24(2):167–174CrossRefGoogle Scholar
  21. 21.
    Demirdögen B, Ceylan OM, Isikoglu S, Mumcuoglu T, Erel O (2014) Evaluation of oxidative stress and paraoxonase phenotypes in pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Clin Lab 60(1):79–86PubMedGoogle Scholar
  22. 22.
    Gagnon M-M, Boisjoly HM, Brunette I, Charest M, Amyot M (1997) Corneal endothelial cell density in glaucoma. Cornea 16(3):314–318CrossRefGoogle Scholar
  23. 23.
    Oliveira-Soto L, Efron N (2001) Morphology of corneal nerves using confocal microscopy. Cornea 20(4):374–384CrossRefGoogle Scholar
  24. 24.
    Eghrari AO, Riazuddin SA, Gottsch JD (2015) Overview of the cornea: structure, function, and development. Prog Mol Biol Transl Sci 134:7–23CrossRefGoogle Scholar
  25. 25.
    Oltulu R, Satirtav G, Kayitmazbatir ET, Bitirgen G, Ozkagnici A, Karaibrahimoglu A (2015) Characteristics of the cornea in patients with pseudoexfoliation syndrome. Arq Bras Oftalmol 78(6):348–351CrossRefGoogle Scholar
  26. 26.
    Doganay S, Tasar A, Cankaya C, Firat PG, Yologlu S (2012) Evaluation of Pentacam-Scheimpflug imaging of anterior segment parameters in patients with pseudoexfoliation syndrome and pseudoexfoliative glaucoma. Clin Exp Optom 95(2):218–222CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of OphthalmologyThe Lazer Goz Eye HospitalKayseriTurkey
  2. 2.Department of OphthalmologyThe Dunya Goz Eye HospitalKonyaTurkey

Personalised recommendations