Advertisement

International Ophthalmology

, Volume 39, Issue 12, pp 2975–2983 | Cite as

The value of nutritional supplements in treating Age-Related Macular Degeneration: a review of the literature

  • Sabrina MukhtarEmail author
  • Balamurali K. Ambati
Review
  • 202 Downloads

Abstract

Purpose

To describe and evaluate the value of nutritional supplements in the management of age-related macular degeneration (AMD) through a review of the current literature.

Methods

An extensive literature search was performed, and key research articles exploring AREDS and AREDS-2 formulations, genetics, omega fatty acids, calcium and folic acid in high-risk women were reviewed. PubMed and Web of Science databases were used for generating articles to review.

Results

The AREDS and AREDS-2 trials, while difficult to validate, show support for antioxidant supplementation in reducing AMD progression in Caucasian populations. While genetic guided personalized medicine has been studied mainly with complement factor H and age-related maculopathy susceptibility 2 risk alleles, the data have not been reproducible. Women at a higher risk of cardiovascular disease may benefit from antioxidant therapies in preventing AMD. Omega 3 fatty acid supplementation has been widely supported through observational studies; however, randomized controlled trials have not shown benefit in disease progression. Calcium exposure has been linked to increased mechanisms in cell death and may be detrimental to older individuals with AMD.

Conclusion

The data regarding nutritional supplements in preventing AMD progression are inconclusive, and therefore recommendations should be based on risk factors and demographic data.

Keywords

Macular degeneration Nutrition Public health Retina 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Rojas-Fernandez CH, Tyber K (2016) Benefits, potential harms, and optimal use of nutritional supplementation for preventing progression of age-related macular degeneration. Ann Pharmacol 51:1–7Google Scholar
  2. 2.
    Friedman DS, O’Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong P, Nemesure B, Mitchell P, Kempen J (2004) Eye DIsease prevalence group. Arch Ophthalmol 122(4):564–572CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Carneiro A, Andrade JP (2017) Nutritional and lifestyle interventions for age related macular degeneration: a review. Oxid Med Cell Longev 2017:6469138PubMedPubMedCentralGoogle Scholar
  4. 4.
    National Eye Institute (2006) National plan for eye and vision research: retinal disease program. Eye Vision Res 1–43Google Scholar
  5. 5.
    Chakravarthy U, Augood C, Bentham GC et al (2007) Cigarette smoking and age-related macular degeneration in the EUREYE Study. Ophthalmology 358(24):2606–2617Google Scholar
  6. 6.
    Carneiro A (2015) Anti-ageing nutrients evidence-based prevention of age-related diseases. Nutrition and the ageing eye. Wiley, Hoboken, NJGoogle Scholar
  7. 7.
    Sparrow JR, Vollmer-Snarr HR, Zhou J, Jang YP, Jockusch S, Itagaki Y, Nakanishi K (2003) A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J Biol Chem 278(20):18207–18213CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Conner WE, Neuringer M (1988) The effects of n-3 fatty acid deficiency and repletion upon the fatty acid composition and function of the brain and retina. Prog Clin Biol Res 282:275–294Google Scholar
  9. 9.
    SanGiovanni JP, Chew EY (2005) The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 24(1):87–138.  https://doi.org/10.1016/j.preteyeres.2004.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Homocysteine Lowering Trialists’ Collaboration (2005) Dose-dependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am J Clin Nutr 82(4):806–812CrossRefGoogle Scholar
  11. 11.
    Crish SD, Calkins DJ (2011) Neurodegeneration in glaucoma. Neuroscience 176(1):1–11CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wojda U, Salinska E, Kuznicki J (2008) Calcium ions in neuronal degeneration. IUBMB Life 60(9):575–590CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chen Y, Bedell M, Zhang K (2010) Age-related macular degeneration: genetic and environmental factors of disease. Mol Interv 10(5):271–281.  https://doi.org/10.1124/mi.10.5.4 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nan R, Gor J, Lengyel I, Perkins SJ (2008) Uncontrolled zinc- and copper-induced oligomerisation of the human complement regulator factor H and its possible implications for function and disease. J Mol Biol 384(5):1341–1352.  https://doi.org/10.1016/j.jmb.2008.10.030 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Perkins SJ, Nan R, Li K, Khan S, Miller A (2012) Complement factor H-ligand interactions: self-association, multivalency and dissociation constants. Immunobiology 217(2):281–297.  https://doi.org/10.1016/j.imbio.2011.10.003 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nan R, Farabella I, Schumacher FF, Miller A, Gor J, Martin AC, Jones DT, Lengyel I, Perkins SJ (2011) Zinc binding to the Tyr402 and His402 allotypes of complement factor H: possible implications for age-related macular degeneration. J Mol Biol 408(4):714–735.  https://doi.org/10.1016/j.jmb.2011.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Calder PC, Albers R, Antoine JM, Blum S, Bourdet-Sicard R, Ferns GA, Folkerts G, Friedmann PS, Frost GS, Guarner F, Lovik M, Macfarlane S, Meyer PD, M’Rabet L, Serafini M, van Eden W, van Loo J, Vas Dias W, Vidry S, Winklhofer-Roob BM, Zhao J (2009) Inflammatory disease processes and interactions with nutrition. Br J Nutr 101(Suppl 1):S1–45.  https://doi.org/10.1017/S0007114509377867 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fritsche LG, Loenhardt T, Janssen A, Fisher SA, Rivera A, Keilhauer CN, Weber BH (2008) Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat Genet 40(7):892–896.  https://doi.org/10.1038/ng.170 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Evans JR, Lawrenson JG (2012) Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD000254.pub3 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Age Related Eye Disease Study Research Group (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119(10):1417–1436CrossRefGoogle Scholar
  21. 21.
    Zampatti S, Ricci F, Cusumano A, Marsella LT, Novelli G, Giardina E (2013) Review of nutrient actions on age-related macular degeneration. Nutr Res 34(2):95–105CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Delcourt C, Carriere I, Delage M, Barberger-Gateau P, Schalch W, POLA Study Group (2006) Plasma lutein and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: the POLA study. Invest Ophthalmol Vis Sci 47(6):2329–2335CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Eye Disease Case-Control Study Group (1993) Antioxidant status and neovascular age-related macular degeneration. Arch Ophthalmol 111:104–109CrossRefGoogle Scholar
  24. 24.
    Chong EW, Wong TY, Kreis AJ, Simpson JA, Guymer RH (2007) Dietary antioxidants and primary prevention of age related macular degeneration: systematic review and meta-analysis. BMJ 335(7623):755CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Heuberger RA, Al Fisher, Jacques PF et al (2002) Relation of blood homocystein and its nutritional determinants to age-related maculopathy in the third National Health and Nutrition Examination Survey. Am J Clin Nutr 76(4):897–902CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Axer-Siegal R, Bourla D, Ehrlich R et al (2004) Association of neovascular age-related macular degeneration and hyperhomocysteinemia. Am J Ophthalmol 137(1):84–89CrossRefGoogle Scholar
  27. 27.
    Rochtchina E, Wang JJ, Flood VM, Mitchell P (2007) Elevated serum homocysteine, low serum vitamin B12, folate, and age-related macular degeneration: the blue mountains eye study. Am J Ophthalmol 143(2):344–346CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nowak M, Swietochowska E, Wielkoszynski T et al (2005) Homocysteine, vitamin B12, and folic acid in age-related macular degeneration. Eur J Ophthalmol 15(6):764–767CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Vine AK, Stader J, Branham K, Musch DC, Swaroop A (2005) Biomarkers of cardiovascular disease as risk factors for age-related macular degeneration. Ophthalmology 112(12):2076–2080CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Coral K, Raman R, Rathi S et al (2006) Plasma homocysteine and total thiol content in patients with exudative age-related macular degeneration. Eye 20(2):203–207CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kamburoglu G, Gumus K, Kadayifcilar S, Eldem B (2006) Plasma homocysteine, vitamin B12 and folate levels in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 244(5):565–569CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Seddon JM, Gensler G, Klein ML, Milton RC (2006) Evaluation of plasma homocystein and risk of age-related macular degeneration. Am J Ophthalmol 141(1):201–203CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Refsum H, Ueland PM, Nygard O, Vollset SE (1998) Homocysteine and cardiovascular disease. Annu Rev Med 49:31–62CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ueland PM, Refsum H, Stabler SP, Malinow MR, Andersson A, Allen RH (1993) Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem 39(9):1764–1779PubMedPubMedCentralGoogle Scholar
  35. 35.
    Welch GN, Loscalzo J (1998) Homocysteine and atherothrombosis. N Engl J Med 338(15):1042–1050CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chambers JC, Obeid OA, Kooner JS (1999) Physiological increments in plasma homocysteine induce vascular endothelial dysfunction in normal human subjects. Arterioscler Thromb Vasc Biol 19(12):2922–2927CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Domagala TB, Undas A, Libura M, Szczeklik A (2000) Pathogenesis of vascular disease in hyperhomocysteinaemia. J Cardiovasc Risk 5(4):239–247CrossRefGoogle Scholar
  38. 38.
    McDowell IF, Lang D (2000) Homocysteine and endothelial dysfunction: a link with cardiovascular disease. J Nutr 130(2Suppl):369S–372SCrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Homocysteine Studies Collaboration (2001) Homocysteine and risk of ischemic heard disease and stroke: a meta analysis. JAMA 288(16):2015–2022CrossRefGoogle Scholar
  40. 40.
    Wald DS, Law M, Morris JK (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288(16):2015–2022CrossRefGoogle Scholar
  41. 41.
    Nappo F, De Rosa N, Marfella R et al (1999) Impairment of endothelial functions by acute hyperhomocysteinemia and reversal by antioxidant vitamins. JAMA 281(22):2113–2118CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Upchurch GR, Welch GN, Fabian AJ et al (1997) Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 272(20):17012–17017CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Stuhlinger MC, Tsao PS, Her JH, Kimoto M, Balint RF, Cooke JP (2001) Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylglargine. Circulation 104(21):2569–2575CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Silverman MD, Tumuluri RJ, Davis M, Lopez G, Rosenbaum JT, Lelkes PI (2002) Homocysteine upregulates vascular cell adhesion molecule-1 expression in cultured human aortic endothelial cells and enhances monocyte adhesion. Arterioscler Thromb Vasc Biol 22(4):587–592CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tsai JC, Perrella MA, Yoshizumi M et al (1994) Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci USA 91(14):6369–6373CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dudman NP, Temple SE, Guo XW, Fu W, Perry MA (1999) Homocysteine enhances neutrophil–endothelial interactions in both cultured human cells and rats in vivo. Circ Res 84(4):409–416CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Christen WG, Glynn RJ, Chew EY, Albert CM, Manson JE (2009) Folic acid, vitamin B6, and vitamin B12 in combination and age-related macular degeneration in a randomized trial of women. Arch Intern Med 169:335341CrossRefGoogle Scholar
  48. 48.
    Albert CM, Cook NR, Gaziano JM et al (2008) Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: a randomized trial. JAMA 299(17):2027–2036CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bazzano LA, Raeynolds K, Holder KN, He J (2006) Effect of folic acid supplementation on risk of cardiovascular disease: a meta analysis of randomized controlled trials. JAMA 296(22):2720–2726CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Vingerling JR, Dielmans I, Bots ML, Hofman A, Grobbee DE, de Jong PT (1995) Age-related macular degeneration is associated with atherosclerosis. The Rotterdam Study. Am J Epidemiol 142(4):404–409CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Snow KK, Seddon JM (1999) Do age-related macular degeneration and cardiovascular disease share common antecedents? Ophthalmol Epidemiol 6(2):125–143CrossRefGoogle Scholar
  52. 52.
    Flinn JM, Kakalec P, Tapero R, Jones B, Lengyel I (2014) Correlations in distribution and concentration of calcium, copper and iron with zinc in isolated extracellular deposits associated with age-related macular degeneration. Metallomics 6(7):1223–1228CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Logue MW, Schu M, Vardarajan BN et al (2014) Search for age-related macular degeneration risk variants in Alzheimer disease genes and pathways. Neurobiol Aging 35(6):1510.e1517–1510.e1518CrossRefGoogle Scholar
  54. 54.
    Zhao Y, Battacharjee S, Jones BM et al (2015) Beta-amyloid precursor protein (BAPP) processing in Alzheimer’s disease (AD) and age-related macular degeneration (AMD). Mol Neurobiol 52(1):533–544CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sivak JM (2013) The aging eye. Invest Ophthalmol Vis Sci 54(1):871–880CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Harvey H, Durant S (2014) The role of glial cells and the complement system in retinal diseases and Alzheimer’s disease. Exp Brain Res 232(11):3363–3377CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kaigi CL, Sing K, Wang SY, Enanoria WT, Lin SC (2015) Self-reported calcium supplementation and age-related macular degeneration. JAMA Ophthalmol 133(7):746–754CrossRefGoogle Scholar
  58. 58.
    Bilezikian JP (1994) NIH consensus development panel on optimal calcium intake. NIH consensus conference. JAMA 272(24):1942–1948CrossRefGoogle Scholar
  59. 59.
    Souied EH, Delcourt C, Querques G et al (2013) Oral docosahexaenoic acid in the prevention of exudative age-related macular degeneration: the nutritional AMD treatment 2 study. Ophthalmology 120(8):1619–1631CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Querques G, Souied EH (2014) The role of omega-3 and micronutrients in age-related macular degeneration. Surv Ophthalmol 59(5):532–539CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Aoki A, Inoue M, Nguyen E et al (2016) Dietary n-3 fatty acid, alpha-tocopherol, zinc, vitamin D, vitamin C, and Beta-carotene are associated with age-related macular degeneration in Japan. Sci Rep 6:20723CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Seddon JM, George S, Rosner B (2006) Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US twin study of age-related macular degeneration. Arch Ophthalmol 124(7):995–1001CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Chua B, Flood V, Rochtchina E, Wang JJ, Smith W, Mitchell P (2006) Dietary fatty acids and the 5 year incidence of age-related maculopathy. Arch Ophthalmol 124(7):981–986CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Georgiou T, Neokleous A, Nicolaou D, Sears B (2014) Pilot study for treating dry age-related macular degeneration (AMD) with high-dose omega-3 fatty acids. PharmaNutrition 2(1):8–11CrossRefGoogle Scholar
  65. 65.
    Querques G, Merle BMJ, Pumariega NM et al (2016) Dynamic drusen remodelling in participants of the nutritional AMD treatment-2 (NAT-2) randomized trial. PLoS ONE 11(2):e149CrossRefGoogle Scholar
  66. 66.
    Lawrenson JG, Evans JR (2012) Omega 3 fatty acids for preventing or slowing the progression age-related macular degeneration. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD010015.pub3 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lawrenson JG, Evans JR (2015) Omega 3 fatty acids for preventing or slowing progression of age-related macular degeneration. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD010015.pub2 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Seddon JM, Silver RE, Rosner B (2016) Response to AREDS supplements according to genetic factors: survival analysis approach using the eye as the unit of analysis. Br J Ophthalmol 100(12):1731–1737.  https://doi.org/10.1136/bjophthalmol-2016-308624 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Awh CC, Lane AM, Hawken S, Zanke B, Kim IK (2013) CFH and ARMS2 genetic polymorphisms predict response to antioxidants and zinc in patients with age-related macular degeneration. Ophthalmology 120(11):2317–2323.  https://doi.org/10.1016/j.ophtha.2013.07.039 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Chew EY, Klein ML, Clemons TE, Agron E, Ratnapriya R, Edwards AO, Fritsche LG, Swaroop A, Abecasis GR, Age-Related Eye Disease Study Research Group (2014) No clinically significant association between CFH and ARMS2 genotypes and response to nutritional supplements: AREDS report number 38. Ophthalmology 121(11):2173–2180.  https://doi.org/10.1016/j.ophtha.2014.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Awh CC, Hawken S, Zanke BW (2015) Treatment response to antioxidants and zinc based on CFH and ARMS2 genetic risk allele number in the age-related eye disease study. Ophthalmology 122(1):162–169.  https://doi.org/10.1016/j.ophtha.2014.07.049 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ho L, van Leeuwen R, Witteman JC, van Duijn CM, Uitterlinden AG, Hofman A, de Jong PT, Vingerling JR, Klaver CC (2011) Reducing the genetic risk of age-related macular degeneration with dietary antioxidants, zinc, and omega-3 fatty acids: the Rotterdam study. Arch Ophthalmol 129(6):758–766.  https://doi.org/10.1001/archophthalmol.2011.141 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Liew SH, Gilbert CE, Spector TD, Mellerio J, Marshall J, van Kuijk FJ, Beatty S, Fitzke F, Hammond CJ (2005) Heritability of macular pigment: a twin study. Invest Ophthalmol Vis Sci 46(12):4430–4436.  https://doi.org/10.1167/iovs.05-0519 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Meyers KJ, Johnson EJ, Bernstein PS et al (2013) Genetic determinants of macular pigments in women of the carotenoids in age related eye disease study. Invest Ophthalmol Vis Sci 54:2333–2345CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Hammond CJ, Liew SH, Van Kuijk FJ, Beatty S, Nolan JM, Spector TD, Gilbert CE (2012) The heritability of macular response to supplemental lutein and zeaxanthin: a classic twin study. Invest Ophthalmol Vis Sci 53(8):4963–4968.  https://doi.org/10.1167/iovs.12-9618 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Rodrigo R, Passalacqua W, Araya J, Orellana M, Rivera G (2003) Homocysteine and essential hypertension. J Clin Pharmacol 43(12):1299–1306.  https://doi.org/10.1177/0091270003258190 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Casas JP, Hingorani AD, Bautista LE, Sharma P (2004) Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch Neurol 61(11):1652–1661.  https://doi.org/10.1001/archneur.61.11.1652 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Stankovic S, Majkic-Singh N (2010) Genetic aspects of ischemic stroke: coagulation, homocysteine, and lipoprotein metabolism as potential risk factors. Crit Rev Clin Lab Sci 47(2):72–123.  https://doi.org/10.3109/10408361003791520 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of Pittsburgh Medical CenterPittsburghUSA
  2. 2.Pacific Clear Vision InstituteEugeneUSA

Personalised recommendations