Advertisement

International Ophthalmology

, Volume 39, Issue 11, pp 2621–2628 | Cite as

Association of KIF26B and COL4A4 gene polymorphisms with the risk of keratoconus in a sample of Iranian population

  • Saman Sargazi
  • Mahdiyeh Moudi
  • Milad Heidari Nia
  • Ramin SaravaniEmail author
  • Hamid Malek Raisi
Original Paper
  • 81 Downloads

Abstract

Purpose

Keratoconus (KTCN) is a congenital corneal eye disorder which correlates with abnormal distribution of the collagen fiber and causes loss of visual acuity. COLA4A gene has a substantive role in collagen synthesis, whereas KIF26B as a new candidate gene belonging to kinesin superfamily (KIFs) has been suggested to be associated with this disease. So, in this preliminary study, we simultaneously evaluated the effects of two single nucleotide polymorphisms, 222855rs7C/T and rs12407427C/T, on KTCN susceptibility in a sample of Iranian population.

Methods

The present case–control study consists of 144 patients confirmed with KTCN and 153 healthy controls. The variants are genotyped by using amplification refractory mutation system–polymerase chain reaction method.

Results

The findings disclosed that rs2228557C/T and rs12407427C/T polymorphisms significantly increased the risk of KTCN in measured (codominant1; p = 0.0001, codominant2; p = 0.0001, codominant3; p = 0.0006, dominant; p = 0.0001, over-dominant; p = 0.0005) and (codominant1; p = 0.0001, codominant3; p = 0.0005, recessive; p = 0.0001) inheritance patterns, respectively.

Conclusion

Our results did prove a statistical association of both rs2228557 and rs12407427 genotypes (TT and CT + CC) and allele (T) with KTCN susceptibility in Iranian population. Further studies in other ethnicities are required to verify our results.

Keywords

COL4A4 KIF26B Keratoconus Gene polymorphism 

Notes

References

  1. 1.
    Guan T, Liu C, Ma Z, Ding S (2012) The point mutation and polymorphism in keratoconus candidate gene TGFBI in Chinese population. Gene 503(1):137–139PubMedCrossRefGoogle Scholar
  2. 2.
    Rabinowitz YS (1998) Keratoconus. Surv Ophthalmol 42(4):297–319PubMedCrossRefGoogle Scholar
  3. 3.
    Štabuc-Šilih M, Ravnik-Glavač M, Glavač D, Hawlina M, Stražišar M (2009) Polymorphisms in COL4A3 and COL4A4 genes associated with keratoconus. Mol Vis 15:2848PubMedPubMedCentralGoogle Scholar
  4. 4.
    Kennedy RH, Bourne WM, Dyer JA (1986) A 48-year clinical and epidemiologic study of keratoconus. Am J Ophthalmol 101(3):267–273PubMedCrossRefGoogle Scholar
  5. 5.
    Kumar NL, Rootman DS (2010) Newer surgical techniques in the management of keratoconus. Int Ophthalmol Clin 50(3):77–88PubMedCrossRefGoogle Scholar
  6. 6.
    Tang YG, Rabinowitz YS, Taylor KD, Li X, Hu M, Picornell Y et al (2005) Genomewide linkage scan in a multigeneration Caucasian pedigree identifies a novel locus for keratoconus on chromosome 5q14.3-q21.1. Genet Med 7(6):397PubMedCrossRefGoogle Scholar
  7. 7.
    McMahon TT, Shin JA, Newlin A, Edrington TB, Sugar J, Zadnik K (1999) Discordance for keratoconus in two pairs of monozygotic twins. Cornea 18(4):444–451PubMedCrossRefGoogle Scholar
  8. 8.
    Pearson A, Soneji B, Sarvananthan N, Sandford-Smith J (2000) Does ethnic origin influence the incidence or severity of keratoconus? Eye 14(4):625PubMedCrossRefGoogle Scholar
  9. 9.
    Wang Y, Rabinowitz Y, Rotter J, Yang H (2000) Genetic epidemiological study of keratoconus: evidence for major gene determination. Am J Med Genet 93(5):403–409PubMedCrossRefGoogle Scholar
  10. 10.
    Momota R, Sugimoto M, Oohashi T, Kigasawa K, Yoshioka H, Ninomiya Y (1998) Two genes, COL4A3 and COL4A4 coding for the human α3 (IV) and α4 (IV) collagen chains are arranged head-to-head on chromosome 2q36 1. FEBS Lett 424(1–2):11–16PubMedCrossRefGoogle Scholar
  11. 11.
    Kokolakis NS, Gazouli M, Chatziralli IP, Koutsandrea C, Gatzioufas Z, Peponis VG et al (2014) Polymorphism analysis of COL4A3 and COL4A4 genes in Greek patients with keratoconus. Ophthalmic Genet 35(4):226–228PubMedCrossRefGoogle Scholar
  12. 12.
    Favor J, Gloeckner CJ, Janik D, Klempt M, Neuhäuser-Klaus A, Pretsch W et al (2006) Type IV procollagen missense mutations associated with defects of the eye, vascular stability, brain, kidney function and embryonic or postnatal viability in the mouse, Mus musculus: An extension of the Col4a1 allelic series and the identification of the first 2 Col4a2 mutant alleles. Genetics 175:725PubMedCrossRefGoogle Scholar
  13. 13.
    Niwa S (2015) Kinesin superfamily proteins and the regulation of microtubule dynamics in morphogenesis. Anat Sci Int 90(1):1–6PubMedCrossRefGoogle Scholar
  14. 14.
    Kaur I, Kaur J, Sooraj K, Goswami S, Saxena R, Chauhan VS et al (2018) Comparative evaluation of the aqueous humor proteome of primary angle closure and primary open angle glaucomas and age-related cataract eyes. Int Ophthalmol 39(1):69–104.PubMedCrossRefGoogle Scholar
  15. 15.
    Rong SS, Ma STU, Yu XT, Ma L, Chu WK, Chan TCY et al (2017) Genetic associations for keratoconus: a systematic review and meta-analysis. Sci Rep 7(1):4620PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Li X, Bykhovskaya Y, Haritunians T, Siscovick D, Aldave A, Szczotka-Flynn L et al (2011) A genome-wide association study identifies a potential novel gene locus for keratoconus, one of the commonest causes for corneal transplantation in developed countries. Hum Mol Genet 21(2):421–429PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hashemi M, Amininia S, Ebrahimi M, Hashemi SM, Taheri M, Ghavami S (2014) Association between hTERT polymorphisms and the risk of breast cancer in a sample of Southeast Iranian population. BMC Res Notes 7(1):895PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Tonks S, Marsh S, Bunce MM, Bodmer J (1999) Molecular typing for HLA class I using ARMS-PCR: further developments following the 12th international histocompatibility workshop. Tissue Antigens 53(2):175–183PubMedCrossRefGoogle Scholar
  19. 19.
    Nakayasu K, Tanaka M, Konomi H, Hayashi T (1986) Distribution of types I, II, III, IV and V collagen in normal and keratoconus corneas. Ophthalmic Res 18(1):1–10PubMedCrossRefGoogle Scholar
  20. 20.
    Ghosh A, Jeyabalan N, Shetty R, Mohan RR (2017) Keratoconus in Asia. Adv Vis Res 1:363–374Google Scholar
  21. 21.
    Burdon KP, Vincent AL (2013) Insights into keratoconus from a genetic perspective. Cli Exp Optom 96(2):146–154CrossRefGoogle Scholar
  22. 22.
    Bykhovskaya Y, Gromova A, Makarenkova HP, Rabinowitz YS (2016) Abnormal regulation of extracellular matrix and adhesion molecules in corneas of patients with keratoconus. Int J Keratoconus Ectatic Corneal Dis 5(2):63PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhang H, Ma R, Wang X, Su Z, Chen X, Shi D et al (2017) KIF26B, a novel oncogene, promotes proliferation and metastasis by activating the VEGF pathway in gastric cancer. Oncogene 36(40):5609PubMedCrossRefGoogle Scholar
  24. 24.
    Liu X, Gong H, Huang K (2013) Oncogenic role of kinesin proteins and targeting kinesin therapy. Cancer Sci 104(6):651–656PubMedCrossRefGoogle Scholar
  25. 25.
    Wang Q, Zhao Z-B, Wang G, Hui Z, Wang M-H, Pan J-F et al (2013) High expression of KIF26B in breast cancer associates with poor prognosis. PLoS ONE 8(4):e61640PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bartoszewski RA, Jablonsky M, Bartoszewska S, Stevenson L, Dai Q, Kappes J et al (2010) A synonymous single nucleotide polymorphism in ΔF508 CFTR alters the secondary structure of the mRNA and the expression of the mutant protein. J Biol Chem M110:154575Google Scholar
  27. 27.
    Chen J-M, Férec C, Cooper DN (2006) A systematic analysis of disease-associated variants in the 3′ regulatory regions of human protein-coding genes I: general principles and overview. Hum Genet 120(1):1–21PubMedCrossRefGoogle Scholar
  28. 28.
    Wittenhagen LM, Kelley SO (2003) Impact of disease-related mitochondrial mutations on tRNA structure and function. Trends Biochem Sci 28(11):605–611PubMedCrossRefGoogle Scholar
  29. 29.
    Sabarinathan R, Tafer H, Seemann SE, Hofacker IL, Stadler PF, Gorodkin J (2013) RNA snp: efficient detection of local RNA secondary structure changes induced by SNP s. Hum Mutat 34(4):546–556PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Clinical Biochemistry, School of MedicineShahid Sadoughi University of Medical SciencesYazdIran
  2. 2.Cellular and Molecular Research CenterZahedan University of Medical SciencesZahedanIran
  3. 3.Department of Medical Genetics, School of MedicineShahid Sadoughi University of Medical SciencesYazdIran
  4. 4.Department of Biology, Faculty of ScienceIsfahan UniversityIsfahanIran
  5. 5.Department of Clinical Biochemistry, School of MedicineZahedan University of Medical SciencesZahedanIran
  6. 6.Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis InstituteZahedan University of Medical SciencesZahedanIran

Personalised recommendations