International Ophthalmology

, Volume 39, Issue 11, pp 2583–2594 | Cite as

Retinal perfusion 6 months after trabeculectomy as measured by optical coherence tomography angiography

  • C. LommatzschEmail author
  • K. Rothaus
  • J. M. Koch
  • C. Heinz
  • S. Grisanti
Original Paper



To investigate potential changes of vessel density (VD) at the optic nerve head (ONH) and the macula 6 months after trabeculectomy (TE).


In a prospective monocentric study, 19 eyes with open-angle glaucoma were treated with TE + MMC (mitomycin C). At four different time points multiple morphological papillary parameters were measured by OCT, and the ONH VD in the radial peripapillary capillary layer and the superficial and deep plexuses of the macula was determined by OCTA (optical coherence tomography angiography, RTVue-XR, Optovue). The mean defect was determined by visual field examination (mode 30-2, Humphrey Field Analyzer). The duration of follow-up was 6 months.


Nineteen eyes, one each from 19 patients (11 females; 8 males) with a mean age of 66.0 (58.07, 70.94) years and a mean intraocular pressure (IOP) of 21.0 mmHg (17.07, 23.87), were included in the study. All showed a significant reduction in IOP at each follow-up after TE (p < 0.0001). There was no significant change in the peripapillary retinal nerve fiber layer thickness (p = 0.88), the ganglion cell complex (p = 0.97), the cup–disk ratio (p = 0.63), the rim area (p = 0.78), or the mean visual field defect (p = 0.82). With regard to VD, no significant difference could be determined in either the ONH or the macular area.


After significant surgical reduction of IOP by TE, there are no significant detectable morphological changes in the ONH or the ganglion cell complex as measured by OCT, nor does the papillary or macular OCTA-determined VD change significantly.

Trial registration 2016-409-f-S Avanti-OCT-A. Registered December 1, 2016.


OCT angiography Glaucoma Intraocular pressure Trabeculectomy Blood flow Vessel density 


Authors’ contributions

CL designed the study, collected data, and wrote the manuscript. KR performed all statistical analysis. JMK, CH, and SG assisted in manuscript writing. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

CL: lecture, Optovue

All other authors declare that they have no conflict of interest.

Ethical approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institution and/or national research comittee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Burgoyne CF (2011) A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res 93:120–132. CrossRefPubMedGoogle Scholar
  3. 3.
    Caprioli J (1994) Clinical evaluation of the optic nerve in glaucoma. Trans Am Ophthalmol Soc 92:589–641PubMedPubMedCentralGoogle Scholar
  4. 4.
    Pasquale LR (2016) Vascular and autonomic dysregulation in primary open-angle glaucoma. Curr Opin Ophthalmol 27:94–101. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yanagi M, Kawasaki R, Wang JJ et al (2011) Vascular risk factors in glaucoma: a review. Clin Exp Ophthalmol 39:252–258. CrossRefPubMedGoogle Scholar
  6. 6.
    Grunwald JE, Sinclair SH, Riva CE (1982) Autoregulation of the retinal circulation in response to decrease of intraocular pressure below normal. Invest Ophthalmol Vis Sci 23:124–127PubMedGoogle Scholar
  7. 7.
    Flammer J, Orgül S (1998) Optic nerve blood-flow abnormalities in glaucoma. Prog Retin Eye Res 17:267–289CrossRefGoogle Scholar
  8. 8.
    Piltz-seymour JR, Grunwald JE, Hariprasad SM, Dupont J (2001) Optic nerve blood flow is diminished in eyes of primary open-angle glaucoma suspects. Am J Ophthalmol 132:63–69CrossRefGoogle Scholar
  9. 9.
    Marangoni D, Falsini B, Colotto A et al (2012) Subfoveal choroidal blood flow and central retinal function in early glaucoma. Acta Ophthalmol (Copenh) 90:e288–294. CrossRefGoogle Scholar
  10. 10.
    Findl O, Rainer G, Dallinger S et al (2000) Assessment of optic disk blood flow in patients with open-angle glaucoma. Am J Ophthalmol 130:589–596CrossRefGoogle Scholar
  11. 11.
    Jia Y, Morrison JC, Tokayer J et al (2012) Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 3:3127–3137. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jia Y, Tan O, Tokayer J et al (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725CrossRefGoogle Scholar
  13. 13.
    Manalastas PIC, Zangwill LM, Saunders LJ et al (2017) Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes. J Glaucoma 26:851–859. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xu H, Kong XM (2017) Study of retinal microvascular perfusion alteration and structural damage at macular region in primary open-angle glaucoma patients. Zhonghua Yan Ke Za Zhi Chin J Ophthalmol 53:98–103Google Scholar
  15. 15.
    Lommatzsch C, Rothaus K, Koch JM et al (2018) OCTA vessel density changes in the macular zone in glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. CrossRefGoogle Scholar
  16. 16.
    Lommatzsch C, Koch JM, Claußnitzer H, Heinz C (2018) OCT angiography of the glaucoma optic nerve. Klin Monatsbl Augenheilkd 235:205–211. CrossRefPubMedGoogle Scholar
  17. 17.
    Synder A, Augustyniak E, Laudańska-Olszewska I, Wesołek-Czernik A (2004) Evaluation of blood-flow parameters in extraocular arteries in patients with primary open-angle glaucoma before and after surgical treatment. Klin Oczna 106:206–208PubMedGoogle Scholar
  18. 18.
    Trible JR, Sergott RC, Spaeth GL et al (1994) Trabeculectomy is associated with retrobulbar hemodynamic changes. A color Doppler analysis. Ophthalmology 101:340–351CrossRefGoogle Scholar
  19. 19.
    Ms J, Schallenberg M, Kramer S et al (2014) Trabeculectomy improves vessel response measured by dynamic vessel analysis (DVA) in glaucoma patients. Open Ophthalmol J 8:75–81. CrossRefGoogle Scholar
  20. 20.
    Cantor LB (2001) The effect of trabeculectomy on ocular hemodynamics. Trans Am Ophthalmol Soc 99:241–252PubMedPubMedCentralGoogle Scholar
  21. 21.
    Patel N, McAllister F, Pardon L, Harwerth R (2018) The effects of graded intraocular pressure challenge on the optic nerve head. Exp Eye Res 169:79–90. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Holló G (2017) Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma 26:e7–e10. CrossRefPubMedGoogle Scholar
  23. 23.
    Chihara E, Dimitrova G, Chihara T (2018) Increase in the OCT angiographic peripapillary vessel density by ROCK inhibitor ripasudil instillation: a comparison with brimonidine. Graefes Arch Clin Exp Ophthalmol 256:1257–1264. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hommer A, Sperl P, Resch H et al (2012) A double-masked randomized crossover study comparing the effect of latanoprost/timolol and brimonidine/timolol fixed combination on intraocular pressure and ocular blood flow in patients with primary open-angle glaucoma or ocular hypertension. J Ocul Pharmacol Ther Off J Assoc Ocul Pharmacol Ther 28:569–575. CrossRefGoogle Scholar
  25. 25.
    Feke GT, Rhee DJ, Turalba AV, Pasquale LR (2013) Effects of dorzolamide-timolol and brimonidine-timolol on retinal vascular autoregulation and ocular perfusion pressure in primary open angle glaucoma. J Ocul Pharmacol Ther Off J Assoc Ocul Pharmacol Ther 29:639–645. CrossRefGoogle Scholar
  26. 26.
    Zéboulon P, Lévêque P-M, Brasnu E et al (2017) Effect of surgical intraocular pressure lowering on peripapillary and macular vessel density in glaucoma patients: an optical coherence tomography angiography study. J Glaucoma 26:466–472. CrossRefPubMedGoogle Scholar
  27. 27.
    Shin JW, Sung KR, Uhm KB et al (2017) Peripapillary microvascular improvement and lamina cribrosa depth reduction after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 58:5993–5999. CrossRefPubMedGoogle Scholar
  28. 28.
    Kim J-A, Kim T-W, Lee EJ et al (2018) Microvascular changes in peripapillary and optic nerve head tissues after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 59:4614–4621. CrossRefPubMedGoogle Scholar
  29. 29.
    Alnawaiseh M, Müller V, Lahme L et al (2018) Changes in flow density measured using optical coherence tomography angiography after istent insertion in combination with phacoemulsification in patients with open-angle glaucoma. J Ophthalmol 2018:2890357. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang Q, Chan S, Yang JY et al (2016) Vascular density in retina and choriocapillaris as measured by optical coherence tomography angiography. Am J Ophthalmol 168:95–109. CrossRefPubMedGoogle Scholar
  31. 31.
    Venugopal JP, Rao HL, Weinreb RN et al (2018) Repeatability and comparability of peripapillary vessel density measurements of high-density and non-high-density optical coherence tomography angiography scans in normal and glaucoma eyes. Br J Ophthalmol. CrossRefPubMedGoogle Scholar
  32. 32.
    Lee EJ, Kim T-W, Weinreb RN, Kim H (2013) Reversal of lamina cribrosa displacement after intraocular pressure reduction in open-angle glaucoma. Ophthalmology 120:553–559. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of OphthalmologySt. Franziskus HospitalMuensterGermany
  2. 2.Department of OphthalmologyUniversity of EssenDuisburgGermany
  3. 3.Department of OphthalmologyUniversity of LuebeckLuebeckGermany

Personalised recommendations