International Ophthalmology

, Volume 39, Issue 11, pp 2485–2496 | Cite as

Comparing the efficacy of trabeculectomy and diode laser cyclophotocoagulation in primary open-angle glaucoma

  • Somar Hasan
  • Theresa Theilig
  • Jan Darius UnterlauftEmail author
Original Paper



The aim was to compare the postsurgical outcomes of trabeculectomy (TET) and transscleral cyclophotocoagulation (CPC) in a similar cohort of eyes diagnosed with primary open-angle glaucoma (POAG).

Materials and methods

For this monocentric non-randomized retrospective comparative trial, the records of eyes which underwent TET or CPC between 2013 and 2016 at our institution for the treatment of POAG were reviewed. Parameters analyzed before surgery as well as 1 and 2–3 years afterwards were visual acuity (VA), intraocular pressure (IOP), mean defect (MD) of the visual field, number of glaucoma medications and the objective refraction using which the surgically induced astigmatism (SIA) was calculated.


In total, 51 eyes of 51 patients underwent TET and 45 eyes of 45 patients underwent CPC. Mean VA dropped in both groups on the last follow-up after surgery (TET-group: 0.17 ± 0.17 to 0.23 ± 0.28 logMAR, p = 0.01/CPC-group: 0.22 ± 0.22 to 0.26 ± 0.27 logMAR, p = 0.01). In the TET- and CPC-groups IOP decreased significantly (TET: 24.9 ± 6.4 to 14.9 ± 3.1 mmHg, p = 0.001/CPC: 23.0 ± 6.5 to 16.0 ± 4.1 mmHg, p = 0.001) although more pronounced and less depending on IOP-lowering medication in eyes after TET. MD remained stable after TET (7.4 ± 4.8 and 8.1 ± 4.9 dB, p = 0.1) but further deteriorated in eyes after CPC (9.0 ± 4.9 and 10.7 ± 4.6 dB, p < 0.001). SIA was comparable in both groups on the last follow-up (TET: 0.83 ± 0.69 D; CPC: 0.91 ± 0.65 D, p = 0.6).


The IOP reduction achieved without medication was more pronounced in the TET-group compared with the CPC-group. Visual field remained stable in the TET-group, while further deteriorating in the CPC-group during follow-up. Eyes undergoing CPC had a higher demand for additional medication to reach comparable success rates as TET. Due to this performing TET is favorable over CPC in POAG eyes.


Primary open-angle glaucoma Trabeculectomy Cyclophotocoagulation Ophthalmic surgery 



  1. 1.
    Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–2090PubMedGoogle Scholar
  2. 2.
    Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267PubMedPubMedCentralGoogle Scholar
  3. 3.
    Quigley HA (1996) Number of people with glaucoma worldwide. Br J Ophthalmol 80:389–393PubMedPubMedCentralGoogle Scholar
  4. 4.
    Flaxman SR, Bourne RRA, Resnikoff S et al (2017) Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 5:e1221–e1234PubMedGoogle Scholar
  5. 5.
    Razeghinejad MR, Spaeth GL (2011) A history of the surgical management of glaucoma. Optomet Vis Sci Off Publ Am Acad Optomet 88:E39–E47Google Scholar
  6. 6.
    Zahid S, Musch DC, Niziol LM, Lichter PR, Collaborative initial glaucoma treatment study G (2013) Risk of endophthalmitis and other long-term complications of trabeculectomy in the Collaborative Initial Glaucoma Treatment Study (CIGTS). Am J Ophthalmol 155(4):674–680PubMedGoogle Scholar
  7. 7.
    Olayanju JA, Hassan MB, Hodge DO, Khanna CL (2015) Trabeculectomy-related complications in Olmsted County, Minnesota, 1985 through 2010. JAMA Ophthalmol 133:574–580PubMedPubMedCentralGoogle Scholar
  8. 8.
    Kim EA, Law SK, Coleman AL et al (2015) Long-term bleb-related infections after trabeculectomy: incidence, risk factors, and influence of bleb revision. Am J Ophthalmol 159:1082–1091PubMedGoogle Scholar
  9. 9.
    Kashiwagi K, Kogure S, Mabuchi F et al (2016) Change in visual acuity and associated risk factors after trabeculectomy with adjunctive mitomycin C. Acta Ophthalmol 94:e561–e570PubMedGoogle Scholar
  10. 10.
    Gedde SJ, Schiffman JC, Feuer WJ et al (2012) Treatment outcomes in the tube versus trabeculectomy (TVT) study after five years of follow-up. Am J Ophthalmol 153(789–803):e782Google Scholar
  11. 11.
    Ness PJ, Khaimi MA, Feldman RM et al (2012) Intermediate term safety and efficacy of transscleral cyclophotocoagulation after tube shunt failure. J Glaucoma 21:83–88PubMedPubMedCentralGoogle Scholar
  12. 12.
    Gupta V, Agarwal HC (2000) Contact trans-scleral diode laser cyclophotocoagulation treatment for refractory glaucomas in the Indian population. Indian J Ophthalmol 48:295–300PubMedGoogle Scholar
  13. 13.
    Ghosh S, Manvikar S, Ray-Chaudhuri N, Birch M (2014) Efficacy of transscleral diode laser cyclophotocoagulation in patients with good visual acuity. Eur J Ophthalmol 24:375–381PubMedGoogle Scholar
  14. 14.
    Grueb M, Rohrbach JM, Bartz-Schmidt KU, Schlote T (2006) Transscleral diode laser cyclophotocoagulation as primary and secondary surgical treatment in primary open-angle and pseudoexfoliative glaucoma. Long-term clinical outcomes. Graefe’s Arch Clin Exp Ophthalmol Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 244:1293–1299Google Scholar
  15. 15.
    Schlote T, Derse M, Rassmann K, Nicaeus T, Dietz K, Thiel HJ (2001) Efficacy and safety of contact transscleral diode laser cyclophotocoagulation for advanced glaucoma. J Glaucoma 10:294–301PubMedGoogle Scholar
  16. 16.
    Egbert PR, Fiadoyor S, Budenz DL, Dadzie P, Byrd S (2001) Diode laser transscleral cyclophotocoagulation as a primary surgical treatment for primary open-angle glaucoma. Arch Ophthalmol 119:345–350PubMedGoogle Scholar
  17. 17.
    Contreras I, Noval S, Gonzalez Martin-Moro J, Rebolleda G (2004) Munoz-Negrete FJ [IOP spikes following contact transscleral diode laser cyclophotocoagulation]. Archivos de la Sociedad Espanola de Oftalmologia 79:105–109PubMedGoogle Scholar
  18. 18.
    Ndulue JK, Rahmatnejad K, Sanvicente C, Wizov SS, Moster MR (2018) Evolution of cyclophotocoagulation. J Ophthalmic Vis Res 13:55–61PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kramp K, Vick HP, Guthoff R (2002) Transscleral diode laser contact cyclophotocoagulation in the treatment of different glaucomas, also as primary surgery. Graefe’s Arch Clin Exp Ophthalmol Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 240:698–703Google Scholar
  20. 20.
    Lai JS, Tham CC, Chan JC, Lam DS (2005) Diode laser transscleral cyclophotocoagulation as primary surgical treatment for medically uncontrolled chronic angle closure glaucoma: long-term clinical outcomes. J Glaucoma 14:114–119PubMedGoogle Scholar
  21. 21.
    Winkler NF, Funk J (2013) Transscleral cyclophotocoagulation as primary surgical intervention in glaucoma. Klin Monatsbl Augenheilkd 230:353–357PubMedGoogle Scholar
  22. 22.
    Bendel RE, Patterson MT (2017) Observational report: improved outcomes of transscleral cyclophotocoagulation for glaucoma patients. Medicine 96:e6946PubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhekov I, Janjua R, Shahid H, Sarkies N, Martin KR, White AJ (2013) A retrospective analysis of long-term outcomes following a single episode of transscleral cyclodiode laser treatment in patients with glaucoma. BMJ Open 3:e002793PubMedPubMedCentralGoogle Scholar
  24. 24.
    Ayyala RS, Pieroth L, Vinals AF et al (1998) Comparison of mitomycin C trabeculectomy, glaucoma drainage device implantation, and laser neodymium:YAG cyclophotocoagulation in the management of intractable glaucoma after penetrating keratoplasty. Ophthalmology 105:1550–1556PubMedGoogle Scholar
  25. 25.
    Fiess A, Shah P, Sii F et al (2017) Trabeculectomy or transscleral cyclophotocoagulation as initial treatment of secondary childhood glaucoma in Northern Tanzania. J Glaucoma 26:657–660PubMedGoogle Scholar
  26. 26.
    Pablo LE, Gomez ML, Pueyo M et al (1996) Semiconductor diode laser transscleral cyclophotocoagulation versus filtering surgery with Mitomycin-C. Int Ophthalmol 20:11–14PubMedGoogle Scholar
  27. 27.
    Kirwan JF, Lockwood AJ, Shah P et al (2013) Trabeculectomy in the 21st century: a multicenter analysis. Ophthalmology 120:2532–2539PubMedGoogle Scholar
  28. 28.
    Landers J, Martin K, Sarkies N, Bourne R, Watson P (2012) A twenty-year follow-up study of trabeculectomy: risk factors and outcomes. Ophthalmology 119:694–702PubMedGoogle Scholar
  29. 29.
    Costa VP, Smith M, Spaeth GL, Gandham S, Markovitz B (1993) Loss of visual acuity after trabeculectomy. Ophthalmology 100:599–612PubMedGoogle Scholar
  30. 30.
    Folgar FA, de Moraes CG, Prata TS et al (2010) Glaucoma surgery decreases the rates of localized and global visual field progression. Am J Ophthalmol 149(258–264):e252Google Scholar
  31. 31.
    Hennis HL, Stewart WC (1992) Semiconductor diode laser transscleral cyclophotocoagulation in patients with glaucoma. Am J Ophthalmol 113:81–85PubMedGoogle Scholar
  32. 32.
    Ishida K (2013) Update on results and complications of cyclophotocoagulation. Curr Opin Ophthalmol 24:102–110PubMedGoogle Scholar
  33. 33.
    Francis BA, Hong B, Winarko J, Kawji S, Dustin L, Chopra V (2011) Vision loss and recovery after trabeculectomy: risk and associated risk factors. Arch Ophthalmol 129:1011–1017PubMedGoogle Scholar
  34. 34.
    Seah SK, Prata JA Jr, Minckler DS et al (1995) Visual recovery after trabeculectomy. J Glaucoma 4:228–234PubMedGoogle Scholar
  35. 35.
    Pokroy R, Greenwald Y, Pollack A, Bukelman A, Zalish M (2008) Visual loss after transscleral diode laser cyclophotocoagulation for primary open-angle and neovascular glaucoma. Ophthalmic Surg Lasers Imaging Off J Int Soc Imaging Eye 39:22–29Google Scholar
  36. 36.
    Rosen WJ, Mannis MJ, Brandt JD (1992) The effect of trabeculectomy on corneal topography. Ophthalmic Surg 23:395–398PubMedGoogle Scholar
  37. 37.
    Egrilmez S, Ates H, Nalcaci S, Andac K, Yagci A (2004) Surgically induced corneal refractive change following glaucoma surgery: nonpenetrating trabecular surgeries versus trabeculectomy. J Cataract Refract Surg 30:1232–1239PubMedGoogle Scholar
  38. 38.
    Pakravan M, Alvani A, Esfandiari H, Ghahari E, Yaseri M (2017) Post-trabeculectomy ocular biometric changes. Clin Exp Optom 100:128–132PubMedGoogle Scholar
  39. 39.
    Tanito M, Matsuzaki Y, Ikeda Y, Fujihara E (2017) Comparison of surgically induced astigmatism following different glaucoma operations. Clin Ophthalmol 11:2113–2120PubMedPubMedCentralGoogle Scholar
  40. 40.
    Kim GA, Lee SH, Lee SY et al (2018) Surgically induced astigmatism following trabeculectomy. Eye 32(7):1265–1270PubMedPubMedCentralGoogle Scholar
  41. 41.
    Arikan G, Yaman A, Ozbek Z, Saatci AO, Durak I (2008) Effect of diode laser cyclophotocoagulation on the anterior segment: an Orbscan Study. Cornea 27:152–155PubMedGoogle Scholar
  42. 42.
    Delbeke H, Stalmans I, Vandewalle E, Zeyen T (2016) The effect of trabeculectomy on astigmatism. J Glaucoma 25:e308–e312PubMedGoogle Scholar
  43. 43.
    El-Saied HM, Foad PH, Eldaly MA, Abdelhakim MA (2014) Surgically induced astigmatism following glaucoma surgery in Egyptian patients. J Glaucoma 23:190–193PubMedGoogle Scholar
  44. 44.
    Osman EA, Al-Muammar A, Mousa A, Al-Mezaine H, Al-Obeidan SA (2010) Controlled cyclophotocoagulation with diode laser in refractory glaucoma and long term follow up at King Abdulaziz University Hospital, Riyadh. Saudi J Ophthalmol Off J Saudi Ophthalmol Soc 24:9–13Google Scholar
  45. 45.
    Walland MJ (2000) Diode laser cyclophotocoagulation: longer term follow up of a standardized treatment protocol. Clin Exp Ophthalmol 28:263–267PubMedGoogle Scholar
  46. 46.
    Hauber FA, Scherer WJ (2002) Influence of total energy delivery on success rate after contact diode laser transscleral cyclophotocoagulation: a retrospective case review and meta-analysis. J Glaucoma 11:329–333PubMedGoogle Scholar
  47. 47.
    Gedde SJ, Herndon LW, Brandt JD, Budenz DL, Feuer WJ, Schiffman JC (2007) Surgical complications in the Tube Versus Trabeculectomy Study during the first year of follow-up. Am J Ophthalmol 143:23–31PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University Eye HospitalUniversity of LeipzigLeipzigGermany
  2. 2.Department of OphthalmologyJena University HospitalJenaGermany

Personalised recommendations