International Ophthalmology

, Volume 39, Issue 9, pp 2121–2128 | Cite as

The effect of combined phacotrabeculectomy, trabeculectomy and phacoemulsification on the corneal endothelium in the early stage: a preliminary study

  • Atila Gokce DemirEmail author
  • Ali Olgun
  • Dilek Guven
  • Mehmet Demir
  • Selam Yekta Sendul
  • Ozge Pinar Akarsu Acar
  • Hakan Kacar
Original Paper



We aimed to investigate the effect of combined phacotrabeculectomy, trabeculectomy and phacoemulsification on the corneal endothelium in the early stage.

Materials and methods

In this prospective and non-randomized study, three groups were identified each consisting of 20 eyes (Group I phacotrabeculectomy, group II trabeculectomy, group III phacoemulsification). In the pre- and postop month 1, corneal endothelial cell density (CECD), coefficient of variation (CV) (polymegathism) and hexagonality (Hex) (pleomorphism) were measured by means of a non-contact specular microscope (Nidek CEM-530, NIDEK Co., Ltd. Japan).


The postop CECD in each of the three groups showed a significant decrease when compared with the preop period (6.1% in the phacotrabeculectomy group, 4.9% in the trabeculectomy group and 7.4% in the phacoemulsification group). The amount of decrease in the preop and postop CECD values showed no significant difference among these three groups. The postop CV value in each of the three groups showed a significant increase when compared with the preop period. The postop Hex value in each of the three groups showed no significant change when compared with the preop period.


In our study, we observed that performing a combined phacotrabeculectomy on patients with glaucoma and cataract association in the same session did not do more harm to the corneal endothelium than other surgical methods. For this reason, this method can be applied safely to a patient population that is likely to develop corneal decompensation.


Combined phacotrabeculectomy Trabeculectomy Phacoemulsification Corneal endothelial cell density Specular microscopy 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Johns GE, Layden WE (1979) Combined trabeculectomy and cataract extraction. Am J Ophthalmol 88:973–981CrossRefGoogle Scholar
  2. 2.
    Dittmer K, Quentin CD (1998) Intraocular pressure regulation after combined glaucoma and cataract operation. Ophthalmology 95:499–503CrossRefGoogle Scholar
  3. 3.
    Williams KK, Noe RL, Grossniklaus HE, Drews-Botsch C, Edelhauser HF (1992) Correlation of histologic corneal endothelial cell counts with specular microscopic cell density. Arch Ophthalmol 110:1146–1149CrossRefGoogle Scholar
  4. 4.
    Bourne WM, Kaufman HE (1976) Specular microscopy of human corneal endothelium in vivo. Am J Ophthalmol 81:319–323CrossRefGoogle Scholar
  5. 5.
    Joyce NC (2003) Proliferative capacity of the corneal endothelium. Prog Retin Eye Res 22:359–389CrossRefGoogle Scholar
  6. 6.
    Soro-Martínez MI, Villegas-Pérez MP, Sobrado-Calvo P, Ruiz-Gómez JM, de Imperial M, Mora-Figueroa J (2010) Corneal endothelial cell loss after trabeculectomy or after phacoemulsification, IOL implantation and trabeculectomy in 1 or 2 steps. Graefes Arch Clin Exp Ophthalmol 248:249–256CrossRefGoogle Scholar
  7. 7.
    Chylack LT Jr, Wolfe JK, Singer DM et al (1993) The lens opacities classification system III. The longitudinal study of Cataract Study Group. Arch Ophthalmol 111:831–836CrossRefGoogle Scholar
  8. 8.
    Hyndiuk RA, Schultz RO (1992) Overview of the corneal toxicity of surgical solutions and drugs: and clinical concepts in corneal edema. Lens Eye Toxic Res 9(3–4):331–350Google Scholar
  9. 9.
    Rhiu S, Hong S, Seong GJ, Kim CY (2010) Phacoemulsification alone versus phacoemulsification combined with trabeculectomy for primary angle-closure glaucoma. Yonsei Med J 51(5):781–783CrossRefGoogle Scholar
  10. 10.
    Li SW, Chen Y, Wu Q, Lu B, Wang WQ, Fang J (2015) Angle parameter changes of phacoemulsification and combined phacotrabeculectomy for acute primary angle closure. Int J Ophthalmol 8(4):742–747Google Scholar
  11. 11.
    Melancia D, Pinto LA (2015) Cataract surgery and intraocular pressure. Ophthalmic Res 53:141–148CrossRefGoogle Scholar
  12. 12.
    Mishima S (1982) Clinical investigations on the corneal endothelium. Ophthalmology 89(6):525–530CrossRefGoogle Scholar
  13. 13.
    Bourne WM, Nelson LR, Hodge DO (1997) Central corneal endothelial cell changes over a ten-year period. Investig Ophthalmol Vis Sci 38:779–782Google Scholar
  14. 14.
    Walkow T, Anders N, Klebe S (2000) Endothelial cell loss after phacoemulsification: relation to preoperative and intraoperative parameters. J Cataract Refract Surg 26:727–732CrossRefGoogle Scholar
  15. 15.
    Alsmman AH, Ezzeldawla M, Mounir A, Elhawary AM, Mohammed OA, Farouk M, Sherif AM (2018) Effect of reformation of the anterior chamber by air or by a balanced salt solution (BSS) on corneal endothelium after phacoemulsification: a comparative study. J Ophthalmol 8:6390706Google Scholar
  16. 16.
    Moschos MM, Chatziralli IP, Sergentanis TN (2011) Viscoat versus Visthesia during phacoemulsification cataract surgery: corneal and foveal changes. BMC Ophthalmol 11:9CrossRefGoogle Scholar
  17. 17.
    Arslan OS, Arici C (2014) Safety of prophylactic intracameral moxifloxacin ophthalmic solution after cataract surgery in patients with penetrating keratoplasty. Int J Ophthalmol 7(5):795–799Google Scholar
  18. 18.
    Espiritu CR, Caparas VL, Bolinao JG (2007) Safety of prophylactic intracameral moxifloxacin 0.5% ophthalmic solution in cataract surgery patients. J Cataract Refract Surg 33(1):63–68CrossRefGoogle Scholar
  19. 19.
    Nuyts RM, Pels E, Greve EL (1992) The effects of 5-fluorouracil and mitomycin C on the corneal endothelium. Curr Eye Res 11(6):565–570CrossRefGoogle Scholar
  20. 20.
    Hou X, Dan H (2015) Small-incision phacotrabeculectomy versus phacoemulsification in refractory acute primary angle closure with cataract. BMC Ophthalmol 15:88CrossRefGoogle Scholar
  21. 21.
    Martínez-Belló C, Rodriguez-Ares T, Pazos B, Capeáns C, Sánchez-Salorio M (2000) Changes in anterior chamber depth and angle width after filtration surgery: a quantitative study using ultrasound biomicroscopy. J Glaucoma 9:51–55CrossRefGoogle Scholar
  22. 22.
    Mohammad JM, Moghadam RS, Behboudi H, Ghanbari A, Moghadam SH, Khoshbakht M (2013) The effect of phacoemulsification with posterior chamber intraocular lens implantation on intraocular pressure and anterior chamber depth. Iran J Ophthalmol 25(4):304–308Google Scholar
  23. 23.
    Alvani A, Pakravan M, Esfandiari H, Yaseri M, Yazdani S, Ghahari E (2016) Biometric changes after trabeculectomy with contact and non-contact biometry. Optom Vis Sci 93(2):136–140CrossRefGoogle Scholar
  24. 24.
    Rahat H, Li W (2013) Longitudinal changes in anterior chamber depth and axial length in Asian subjects after trabeculectomy surgery. Br J Ophthalmol 97:852–856CrossRefGoogle Scholar
  25. 25.
    Casini G, Loiudice P, Pellegrini M, Sframeli AT, Martinelli P, Passani A, Nardi M (2015) Trabeculectomy versus EX-PRESS shunt versus ahmed valve implant: short-term effects on corneal endothelial cells. Am J Ophthalmol 160(6):1185–1190CrossRefGoogle Scholar
  26. 26.
    Storr-Paulsen T, Norregaard JC, Ahmed S, Storr-Paulsen A (2008) Corneal endothelial cell loss after mitomycin C-augmented trabeculectomy. J Glaucoma 17(8):654–657CrossRefGoogle Scholar
  27. 27.
    Lázaro García C, Castillo Gómez A, García Feijóo J, Macías Benítez JM, García SJ (2000) Estudio del endotelio corneal tras la cirugía del glaucoma. Arch Soc Esp Oftalmol 75:75–80Google Scholar
  28. 28.
    Gagnon MM, Boisjoly HM, Brunette I, Charest M, Amyot M (1997) Corneal endothelial cell density in glaucoma. Cornea 16(3):314–318CrossRefGoogle Scholar
  29. 29.
    Topouzis F, Coleman AL, Choplin N, Bethlem MM, Hill R, Yu F, Panek WC, Wilson MR (1999) Follow-up of the original cohort with the Ahmed glaucoma valve implant. Am J Ophthalmol 128(2):198–204CrossRefGoogle Scholar
  30. 30.
    Walkow T, Anders N, Klebe S (2000) Endothelial cell loss after phacoemulsification: relation to preoperative and intraoperative parameters. J Cataract Refract Surg 26:727–732CrossRefGoogle Scholar
  31. 31.
    Ventura AC, Wälti R, Böhnke M (2001) Corneal thickness and endothelial density before and after cataract surgery. Br J Ophthalmol 85(1):18–20CrossRefGoogle Scholar
  32. 32.
    Bourne RR, Minassian DC, Dart JK, Rosen P, Kaushal S, Wingate N (2004) Effect of cataract surgery on the corneal endothelium: modern phacoemulsification compared with extracapsular cataract surgery. Ophthalmology 111(4):679–685CrossRefGoogle Scholar
  33. 33.
    Inal A, Bayraktar Ş, Inal B, Bayraktar Z, Yılmaz ÖF (2005) Intraocular pressure control after clear corneal phacoemulsification in eyes with previous trabeculectomy: a controlled study. Acta Ophthalmol 83:554–560CrossRefGoogle Scholar
  34. 34.
    Ehrnrooth P, Lehto I, Puska P, Laatikainen L (2005) Phacoemulsification in trabeculectomized eyes. Acta Ophthalmol Scand 83(5):561–566CrossRefGoogle Scholar
  35. 35.
    Longo A, Uva MG, Reibaldi A, Avitabile T, Reibaldi M (2015) Long-term effect of phacoemulsification on trabeculectomy function. Eye (Lond). 29(10):1347–1352CrossRefGoogle Scholar
  36. 36.
    Jampel HD, Friedman DS, Lubomski LH, Kempen JH, Quigley H, Congdon N, Levkovitch-Verbin H, Robinson KA, Bass EB (2002) Effect of technique on intraocular pressure after combined cataract and glaucoma surgery: an evidence-based review. Ophthalmology 109:2215–2224CrossRefGoogle Scholar
  37. 37.
    Friedman DS, Jampel HD, Lubomski LH, Kempen JH, Quigley H, Congdon N, Levkovitch-Verbin H, Robinson KA, Bass EB (2002) Surgical strategies for coexisting glaucoma and cataract: an evidence-based update. Ophthalmol 109:1902–1913CrossRefGoogle Scholar
  38. 38.
    Vergés C, Cazal J, Lavin C (2005) Surgical strategies in patients with cataract and glaucoma. Curr Opin Ophthalmol 16(1):44–52CrossRefGoogle Scholar
  39. 39.
    Napoli PE, Zucca I, Fossarello M (2014) Qualitative and quantitative analysis of filtering blebs with optical coherence tomography. Can J Ophthalmol 49:210–216CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Atila Gokce Demir
    • 1
    Email author
  • Ali Olgun
    • 2
  • Dilek Guven
    • 2
  • Mehmet Demir
    • 2
  • Selam Yekta Sendul
    • 2
  • Ozge Pinar Akarsu Acar
    • 3
  • Hakan Kacar
    • 2
  1. 1.Derik State HospitalMardinTurkey
  2. 2.Sisli Hamidiye Etfal Education and Research HospitalIstanbulTurkey
  3. 3.Bakirkoy Sadi Konuk Education and Research HospitalIstanbulTurkey

Personalised recommendations