International Ophthalmology

, Volume 39, Issue 9, pp 2005–2014 | Cite as

Structural features of eyelid connective tissue in patients with primary open-angle glaucoma

  • L. A. SvetikovaEmail author
  • E. N. Iomdina
  • N. Y. Ignatyeva
  • A. N. Serik
  • S. F. Migal
  • N. A. Nazarova
Original Paper



To study the connective tissue (CT) structure of upper eyelid skin of primary open-angle glaucoma (POAG) patients.

Patients and methods

Forty-seven patients aged 47–91 expecting blepharoplasty formed 3 groups: group 1 [16 subjects without POAG, median age 55 years (interquartile range 54–55.5)], group 2 [12 subjects without POAG, median age 73 (72–76.5)], and group 3 [(19 subjects with POAG, median age 74 (70–80.5)]. Age differences between groups 1 and 2 and groups 1 and 3 are significant (p < 0.05). Thermodynamic parameters of skin samples taken during blepharoplasty: Endothermic peak (\(T_{d}\), °C) and denaturation enthalpy (\(\Delta H_{d}\), J/g of dry weight) were determined using differential scanning calorimetry.


\(\Delta H_{d}\) and \(T_{d}\) in groups 1–3 were, respectively, 8.41 (7.42–10.25) and 66.55 (59.9–66.7); 7.10 (5.76–10.17) and 67.35 (67.0–68.03); 11.40 (9.0–14.9) and 67.70 (67.05–68.45). \(T_{d}\) differences between groups 1 and 2 are significant (p < 0.05), and Spearman’s correlation between the age and \(T_{d}\) is direct, medium (R = 0.638) and significant. \(\Delta H_{d}\) in group 3 is significantly higher than in group 2. \(\Delta H_{d}\) and \(T_{d}\) in patients without POAG (groups 1 and 2) and those with POAG (group 3) are, respectively, 7.79 (6.9–10.17) and 66.6 (61.2–67,3); 11.40 (9.0–14.9); 67.7 (67.05–68.45); the respective differences are significant.


Patients without POAG show a significant increase in \(T_{d}\) with age, while \(\Delta H_{d}\) slightly decreases. In POAG, \(\Delta H_{d}\) is significantly higher and \(T_{d}\) tends to grow, which may indicate structural changes in eyelid CT (collagen accumulation and cross-linking level rise). Since the upper lid is unaffected by increasing IOP directly, the changes may be viewed as manifestations of systemic CT pathology.


Glaucoma Collagen Cross-links Connective tissue Eyelid skin 



The authors report no commercial relationship existed in the form of financial support or personal financial interest.

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.


  1. 1.
    Neroev VV, Kiseleva OA, Bessmertny AM (2013) The main results of a multicenter study of epidemiological characteristics of primary open angle glaucoma in the Russian Federation. Rus Ophthalmol J 3(6):4–7 (in Russian) Google Scholar
  2. 2.
    Quigley HA, Broman AT (2006) Number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267. CrossRefGoogle Scholar
  3. 3.
    Vajaranant TS, Wu S, Torres M, Varma R (2012) The changing face of primary open-angle glaucoma: demographic and geographic changes from 2011–2050. Am J Ophthalmol 154(2):303–314. CrossRefGoogle Scholar
  4. 4.
    Starikova DI, Churnosov MI (2017) Modern views on the molecular basis of etiopathogenesis of primary open angle glaucoma. Fyodorov J Ophthalm Surg 3:80–88 (in Russian) CrossRefGoogle Scholar
  5. 5.
    Quigley HA (2005) Glaucoma: macrocosm to microcosm the Friedenwald lecture. Investig Ophthalmol Vis Sci 46:2662–2670. CrossRefGoogle Scholar
  6. 6.
    Barton K, Hitchings RA (2013) Medical management of glaucoma. Springer Healthcare, LondonCrossRefGoogle Scholar
  7. 7.
    Erb C (2017) Glaucoma progression: risk factors, diagnostic and treatment strategies, 1st edn. UNI-MED, BerlinGoogle Scholar
  8. 8.
    Strakhov VV, Alekseev VV (2009) The pathophysiology of a primary glaucoma: “all or nothing”. Glaucoma 2:40–52 (in Russian) Google Scholar
  9. 9.
    Svetikova LA, Iomdina EN, Kiseleva OA (2013) Biomechanical and biochemical parameters of the corneoscleral capsule of patients with primary open-angle glaucoma. Rus Ophthalmol J 2:105–110 (in Russ.) Google Scholar
  10. 10.
    Quigley HA, Cone FE (2013) Development of diagnostic and treatment strategies for glaucoma through understanding and modification of scleral and lamina cribrosa connective tissue. Cell Tissue Res 353(2):231–244. CrossRefGoogle Scholar
  11. 11.
    Coudrillier B, Pijanka JK, Jefferys JL, Goel A, Quigley HA, Boote C, Nguyen TD (2015) Glaucoma related changes in the mechanical properties and collagen micro-architecture of the human sclera. PLoS ONE 10(7):e0131396. CrossRefGoogle Scholar
  12. 12.
    Iomdina EN, Ignatieva NYu, Danilov NA, Arutiunian LL, Kiseleva OA, Nazarenko LA (2011) Biochemical, structural and biomechanical features of human scleral matrix in primary open-angle glaucoma. Vestn oftalmol 6:10–14 (in Russian) Google Scholar
  13. 13.
    Quigley HA (2015) The contribution of the sclera and lamina cribrosa to the pathogenesis of glaucoma: diagnostic and treatment implications. Prog Brain Res 220:59–86. CrossRefGoogle Scholar
  14. 14.
    Downs JC (2015) Optic nerve head biomechanics in aging and disease. Exp Eye Res 133:19–29. CrossRefGoogle Scholar
  15. 15.
    Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA, Nguyen TD (2012) Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Investig Ophthalmol Vis Sci 53(4):1714–1728. CrossRefGoogle Scholar
  16. 16.
    Geraghty B, Jones SW, Rama P, Akhtar R, Elsheikh A (2012) Age-related variations in the biomechanical properties of human sclera. J Mech Behav Biomed Mater 16:181–191. CrossRefGoogle Scholar
  17. 17.
    Zatulina NI (1978) Comparative study of the eye drainage system in physiological aging and in primary glaucoma. In: Morphological basis of clinical and experimental ophthalmology. Moscow, pp 17–18 (in Russian)Google Scholar
  18. 18.
    Vranka JA, Kelley MJ, Acott TS, Keller KE (2015) Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res 133:112–125. CrossRefGoogle Scholar
  19. 19.
    Acott TS, Kelley MJ (2008) Extracellular matrix in the trabecular meshwork. Exp Eye Res 86(4):543–561. CrossRefGoogle Scholar
  20. 20.
    Iomdina EN, Kiseleva OA, Svetikova LA, Lyubimov GA, Moiseeva IN, Stein AA (2014) A new algorithm estimating hydrodynamic parameters of a glaucomatous eye. Vestn oftalmol 4:8–13 (in Russ.) Google Scholar
  21. 21.
    Jones HJ, Girard MJ, White N, Fautsch MP, Morgan JE, Ethier CR, Albon J (2015) Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head. J R Soc Interface 12(106):20150066. CrossRefGoogle Scholar
  22. 22.
    Iomdina EN, Bauer SM, Kotliar KE (2015) Eye biomechanics: theoretical aspects and clinical applications. Real Time, Moscow (in Russian) Google Scholar
  23. 23.
    Iomdina EN, Arutyunyan LL, Ignatieva NYu (2016) A comparative study of age-related level of sclera collagen crosslinking in patients with different stages of primary open angle glaucoma. Rus Ophthalmol J 9(1):20–28 (in Russ.) Google Scholar
  24. 24.
    Danilov NA, Ignatieva NYu, Iomdina EN, Arutyunyan LL, Grokhovskaya TE, Lunin VV (2011) Sclera of the Glaucomatous eye: physicochemical analysis. Biophysics 56:490–495CrossRefGoogle Scholar
  25. 25.
    Iomdina EN, Tarutta EP, Markosyan GA, Aksenova YuM, Kruzhkova GV, Ivashchenko ZhN, Smirnova TS, Bedretdinov AN (2013) Biomechanical characteristics of the corneoscleral tunic and the state of the connective tissue system in the children and adolescents presenting with various forms of progressive myopia. Rus Pediatr Ophthalmol 1:18–23 (in Russian) Google Scholar
  26. 26.
    Iomdina EN, Tarutta EP, Markossian GA, Aksenova YuM, Smirnova TS, Bedretdinov AN (2015) Sclera as the target tissue in progressive myopia. Pomeranian J Life Sci 61(2):146–152. CrossRefGoogle Scholar
  27. 27.
    Siordia JA, Franco J, Golden TR, Dar B (2016) Ocular pseudoexfoliation syndrome linkage to cardiovascular disease. Curr Cardiol Rep 18(7):61. CrossRefGoogle Scholar
  28. 28.
    Wirostko BM, Curtin K, Ritch R, Thomas S, Allen-Brady K, Smith KR, Hageman GS, Allingham RR (2016) Risk for exfoliation syndrome in women with pelvic organ prolapse: a Utah project on exfoliation syndrome (UPEXS) Study. JAMA Ophthalmol 134(11):1255–1262. CrossRefGoogle Scholar
  29. 29.
    Chan TCW, Bala C, Siu A, Wan F, White A (2017) Risk factors for rapid glaucoma disease progression. Am J Ophthalmol 180:151–157. CrossRefGoogle Scholar
  30. 30.
    Gomes BF, Souza R, Valadão T, Kara-Junior N, Moraes HV, Santhiago MR (2017) Is there an association between glaucoma and capillaroscopy in patients with systemic sclerosis? Int Ophthalmol 38:251–256. Google Scholar
  31. 31.
    Ashworth J, Flaherty M, Pitz S, Ramlee A (2015) Assessment and diagnosis of suspected glaucoma in patients with mucopolysaccharidosis. Acta Ophthalmol 93(2):111–117. CrossRefGoogle Scholar
  32. 32.
    Eroshevsky TI, Sviatkovskaya TY (1977) A study of oxyproline content in blood serum of healthy persons and patients with primary glaucoma at various age. Oftalmol Zh. 2:101–103 (in Russian) Google Scholar
  33. 33.
    Eroshevsky TI, Sviatkovskaya TY (1979) Collagen metabolism in patients with primary glaucoma. Oftalmol Zh 1:21–25 (in Russian) Google Scholar
  34. 34.
    Eroshevsky TI, Sviatkovskaya TY (1984) Changes in collagenic metabolism depending of primary open-angle glaucoma. Oftalmol Zh 8:475–478 (in Russian) Google Scholar
  35. 35.
    Svetikova LA, Iomdina EN, Ignatieva NYu, Serik AN, Migal SF, Ivanchenko OV, Nazarova NA (2016) A study of structural properties of eyelid connective tissue in patients with primary open-angle glaucoma. Rus J Glaucoma. 15(4):12–18 (in Russian) Google Scholar
  36. 36.
    Krieg T, Aumailley M (2011) The extracellular matrix of the dermis: flexible structures with dynamic functions. Exp Dermatol 20:689–695. CrossRefGoogle Scholar
  37. 37.
    Wiegand N, Naumov I, Vamhidy L, Kereskai L, Lorinczy D, Nöt LG (2013) Comparative calorimetric analysis of 13 different types of human healthy and pathologic collagen tissues. Thermochim Acta 568:171–174. CrossRefGoogle Scholar
  38. 38.
    Ignatieva NYu, Lunin VV, Averkiev SV, Maiorova AF, Bagratashvili VN, Sobol EN (2004) DSC investigation of connective tissues treated by IR-laser radiation. Thermochim Acta 422(2):43–48CrossRefGoogle Scholar
  39. 39.
    Tang R, Samouillan V, Dandurand J, Lacabanne C, Lacoste-Ferre M-H, Bogdanowicz P, Bianchi P, Villaret A, Nadal-Wollbold F (2017) Identification of ageing biomarkers in human dermis biopsies by thermal analysis (DSC) combined with Fourier transform infrared spectroscopy (FTIR/ATR). Skin Res Technol 23(4):573–580. CrossRefGoogle Scholar
  40. 40.
    Tan J, Berke S (2013) Latanoprost-induced prostaglandin-associated periorbitopathy. Optom Vis Sci 90(9):245–247CrossRefGoogle Scholar
  41. 41.
    Kent TL, Custer PL (2017) Structural and histologic eyelid changes associated with 6 months of topical bimatoprost in the rabbit. J Glaucoma 26(3):253–257. CrossRefGoogle Scholar
  42. 42.
    Peplinski LS, Albiani Smith K (2004) Deepening of lid sulcus from topical bimatoprost therapy. Optom Vis Sci 81:574–577CrossRefGoogle Scholar
  43. 43.
    Yang HK, Park KH, Kim TW, Kim DM (2009) Deepening of eyelid superior sulcus during topical travoprost treatment. Jpn J Ophthalmol 53:176–179CrossRefGoogle Scholar
  44. 44.
    Flandin F, Buffevant C, Herbage D (1984) A differential scanning calorimetry analysis of the age-related changes in the thermal stability of rat skin collagen. Biochim Biophys Acta 791:205–211CrossRefGoogle Scholar
  45. 45.
    Gill P, Moghadam TT, Ranjbar B (2010) Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech 21(4):167–193Google Scholar
  46. 46.
    Fratzl P (2008) Collagen: structure and mechanics. Springer, PotsdamCrossRefGoogle Scholar
  47. 47.
    Ignatieva NYu, Danilov NA, Lunin VV, Obrezkova MV, Averkiev SV, Chaikovskii TI (2007) The change of thermodynamic parameters of collagen denaturation of eye tissues due non-enzymatic glycation. Mosc Univ Chem Bull 48:75–79 (in Russian) Google Scholar
  48. 48.
    Iomdina EN, Arutyunyan LL, Ignatieva NYu (2016) Structural and biomechanical properties of tenon capsule of the in primary open-angle glaucoma. Nov Glaucomy 1:101–103 (in Russian) Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.A.A.Vishnevsky Central Military Clinical HospitalRussian Ministry of DefenseMoscowRussia
  2. 2.Moscow Helmholtz Research Institute of Eye DiseasesRussian Ministry of HealthMoscowRussia
  3. 3.M.V.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations