International Ophthalmology

, Volume 39, Issue 9, pp 1973–1980 | Cite as

Surgical outcomes of 27-gauge and 25-gauge vitrectomy day surgery for proliferative diabetic retinopathy

  • Zeon Naruse
  • Hiroyuki ShimadaEmail author
  • Ryusaburo Mori
Original Paper



To compare postoperative outcomes of 27-gauge (G) and 25-G vitrectomy conducted as day surgery for proliferative diabetic retinopathy (PDR).


One hundred eighty-five consecutive PDR patients (185 eyes) who underwent primary vitrectomy (27-G in 64 eyes, 25-G in 121 eyes) were analyzed.


The 27-G and 25-G groups did not differ significantly in preoperative Early Treatment Diabetic Retinopathy Study (ETDRS) score, age, or preoperative intraocular pressure. The proportions of simultaneous cataract surgery (27-G vs. 25-G: 59.4% vs. 62.4%) and air-filled eyes (76.6% vs. 85.1%) were not significantly different between two groups. Both groups showed significant improvement in ETDRS score at postoperative 1, 3, and 6 months (all, P < 0.0001). Mean gain in ETDRS score from baseline was apparently better in 27-G group than in 25-G group at 1, 3, and 6 months, but there were no significant differences (1 month: 20.3 vs. 13.1 letters, P = 0.0703; 3 months: 22.9 vs. 17.5 letters, P = 0.1561; 6 months: 24.3 vs. 19.3 letters, P = 0.3313). Operation time was apparently longer for 27-G vitrectomy, but there was no significant difference (54.0 vs. 51.1 min, P = 0.3676). The same was observed for postoperative intraocular pressure at postoperative day 1 (19.7 vs. 18.1 mmHg, P = 0.1353). Incidence of postoperative retinal detachment (1.6% vs. 0.8%) and reoperation due to vitreous hemorrhage (6.3% vs. 6.6%) was not different between two groups.


The 27G system is as safe and as useful as the 25G system when used for PDR and can be expected to achieve earlier recovery of postoperative visual acuity.


Day surgery Operative time Proliferative diabetic retinopathy 25-gauge vitrectomy 27-gauge vitrectomy Visual acuity 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Ethical approval

This study was approved by the Ethical Committee of the Nihon University School of Medicine.

Informed consent

Before surgery, informed consent was obtained from each patient following an explanation of the vitrectomy procedures and potential adverse effects of the procedure. For the retrospective study, formal consent is not required.


  1. 1.
    Oshima Y, Wakabayashi T, Sato T et al (2010) A 27-gauge instrument system for transconjunctival sutureless microincision vitrectomy surgery. Ophthalmology 117(93–102):e2Google Scholar
  2. 2.
    Osawa S, Oshima Y (2015) 27-gauge vitrectomy. Dev Ophthalmol 54:54–62CrossRefGoogle Scholar
  3. 3.
    Zehetner C, Moelgg M, Bechrakis E et al (2017) In vitro flowanalysis of novel double-cutting, open-port, ultrahigh-speed vitrectomy system. Retina. (Epub ahead of print) Google Scholar
  4. 4.
    Lin X, Apple D, Hu J et al (2017) Advancements of vitreoretinal surgical machines. Curr Opin Ophthalmol 28:242–245CrossRefGoogle Scholar
  5. 5.
    Kunikata H, Abe T, Nakazawa T (2016) Heads-up macular surgery with a 27-gauge microincision vitrectomy system and minimal illumination. Case Rep Ophthalmol 7:265–269CrossRefGoogle Scholar
  6. 6.
    de Oliveira PR, Berger AR, Chow DR (2016) Vitreoretinal instruments: vitrectomy cutters, endoillumination and wide-angle viewing systems. Int J Retina Vitreous 2(1):28CrossRefGoogle Scholar
  7. 7.
    Khan MA, Shahlaee A, Toussaint B et al (2016) Outcomes of 27 gauge microincision vitrectomy surgery for posterior segment disease. Am J Ophthalmol 161:36–43CrossRefGoogle Scholar
  8. 8.
    Khan MA, Kuley A, Riemann CD et al (2018) Long-term visual outcomes and safety profile of 27-gauge pars plana vitrectomy for posterior segment disease. Ophthalmology 125:423–431CrossRefGoogle Scholar
  9. 9.
    Rizzo S, Barca F, Caporossi T et al (2015) Twenty seven gauge vitrectomy for various vitreoretinal diseases. Retina 35:1273–1278CrossRefGoogle Scholar
  10. 10.
    Wu RH, Zhang R, Lin Z et al (2018) A comparison between topical and retrobulbar anesthesia in 27-gauge vitrectomy for vitreous floaters: a randomized controlled trial. BMC Ophthalmol 18:164CrossRefGoogle Scholar
  11. 11.
    Caporossi T, Finocchio L, Barca F et al (2017) Scleral buckling for primary rhegmatogenous retinal detachment using a noncontact wide-agle viewing system with a cannula-based 27-G chandelier endoilluminator. Retina. (Epub ahead of print) Google Scholar
  12. 12.
    Xiao B, Yang J, Chu Y et al (2017) Prompt 27-gauge sutureless transconjunctival vitrectomy for bleb-associated endophthalmitis. Int Ophthalmol. (Epub ahead of print) Google Scholar
  13. 13.
    Yoneda K, Morikawa K, Oshima Y, Japan Microincision Vitrectomy Surgery Study Group et al (2017) Surgical outcome of 27-gauge vitrectomy for consecutive series of 163 eyes with various vitreous disease. Retina 37:2130–2137CrossRefGoogle Scholar
  14. 14.
    Nagiel A, McCannel CA, Moreno C et al (2017) Vitrectomy-assisted biopsy for prognostication of choroidal melanoma 2 mm or less in thickness with a 27-gauge cutter. Retina 37:1377–1382CrossRefGoogle Scholar
  15. 15.
    Otsuka K, Imai H, Miki A et al (2018) Impact of postoperative positioning on the outcome of pars plana vitrectomy with gas tamponade for primary rhegmatogenous retinal detachment: comparison between supine and prone positioning. Acta Ophthalmol 96:e189–e194CrossRefGoogle Scholar
  16. 16.
    Zhang Z, Wei Y, Jiang X et al (2018) Surgical outcomes of 27-gauge pars plana vitrectomy with short-term postoperative tamponade of perfluorocarbon liquid for repair of giant retinal tears. Int Ophthalmol 38:1505–1513CrossRefGoogle Scholar
  17. 17.
    Maruko I, Koizumi H, Kogure-Katakura A et al (2017) Extraocular technique of intrascleral intraocular lLens fixation using a pair of the shaft-bended 27-gauge needles. Retina 37:191–193CrossRefGoogle Scholar
  18. 18.
    Pavlidis M, Körber N, Höhn F et al (2016) Surgical and functional results of 27-gauge vitrectomy combined with coaxial 1.8 mm microincision cataract surgery: a consecutive case series. Retina 36:2093–2100CrossRefGoogle Scholar
  19. 19.
    Naruse S, Shimada H, Mori R (2017) 27-gauge and 25-gauge vitrectomy day surgery for idiopathic epiretinal membrane. BMC Ophthalmol 17:188CrossRefGoogle Scholar
  20. 20.
    Takashina H, Watanabe A, Tsuneoka H (2017) Perioperative changes of the intraocular pressure during the treatment of epiretinal membrane by using 25- or 27-gauge sutureless vitrectomy without gas tamponade. Clin Ophthalmol 11:739–743CrossRefGoogle Scholar
  21. 21.
    Mitsui K, Kogo J, Takeda H et al (2016) Comparative study of 27-gauge vs 25-gauge vitrectomy for epiretinal membrane. Eye (Lond) 30:538–544CrossRefGoogle Scholar
  22. 22.
    Otsuka K, Imai H, Fujii A et al (2018) Comparison of 25- and 27-gauge pars plana vitrectomy in repairing primary rhegmatogenous retinal detachment. J Ophthalmol 2018:7643174Google Scholar
  23. 23.
    Romano MR, Cennamo G, Ferrara M et al (2017) Twenty-seven-gauge versus 25-gauge vitrectomy for primary rhegmatogenous retinal detachment. Retina 37:637–642CrossRefGoogle Scholar
  24. 24.
    Rizzo S, Polizzi S, Barca F et al (2017) Comparative study of 27-gauge versus 25-gauge vitrectomy for the treatment of primary rhegmatogenous retinal detachment. J Ophthalmol 2017:6384985Google Scholar
  25. 25.
    Mori R, Naruse S, Shimada H (2018) Comparative study of 27-gauge and 25-gauge vitrectomy performed as day surgery. Int Ophthalmol 38:1575–1582CrossRefGoogle Scholar
  26. 26.
    Gozawa M, Takamura Y, Miyake S et al (2017) Comparison of subconjunctival scarring after microincision vitrectomy surgery using 20-, 23-, 25- and 27-gauge systems in rabbits. Acta Ophthalmol 95:e602–e609CrossRefGoogle Scholar
  27. 27.
    Tekin K, Sonmez K, Inanc M et al (2018) Evaluation of corneal topographic changes and surgically induced astigmatism after transconjunctival 27-gauge microincision vitrectomy surgery. Int Ophthalmol 38:635–643CrossRefGoogle Scholar
  28. 28.
    Hirashima T, Utsumi T, Hirose M et al (2017) Influences of 27-Gauge vitrectomy on corneal topographic conditions. J Ophthalmol 2017:8320909Google Scholar
  29. 29.
    Khan MA, Samara WA, Hsu J et al (2017) Short-term outcomes of hybrid 23-, 25-, and 27-gauge vitrectomy for complex diabetic tractional retinal detachment repair. Retin Cases Brief Rep. (Epub ahead of print) Google Scholar
  30. 30.
    Shahzadi B, Rizwi SF, Qureshi FM et al (2017) Outcomes of transconjunctival sutureless 27-gauge micro-incision vitrectomy surgery in diabetic vitreous haemorrhage. Pak J Med Sci 33:86–89CrossRefGoogle Scholar
  31. 31.
    Shahzadi B, Rizwi SF, Qureshi FM et al (2017) Outcomes of transconjunctival sutureless 27-gauge micro-incision vitrectomy surgery in diabetic vitreous haemorrhage. Pak J Med Sci 33:86–89CrossRefGoogle Scholar
  32. 32.
    Shimada H, Nakashizuka H, Hattori T et al (2013) Reduction of vitreous contamination rate after 25-gauge vitrectomy by surface irrigation with 0.25% povidone-iodine. Retina 33:143–151CrossRefGoogle Scholar
  33. 33.
    Shimada H, Nakashizuka H, Hattori T et al (2008) Conjunctival displacement to the corneal side for oblique-parallel insertion in 25-gauge vitrectomy. Eur J Ophthalmol 18:848–851CrossRefGoogle Scholar
  34. 34.
    Shimada H, Nakashizuka H, Mori R et al (2006) 25-gauge scleral tunnel transconjunctival vitrectomy. Am J Ophthalmol 142:871–873CrossRefGoogle Scholar
  35. 35.
    Shimada H, Nakashizuka H, Hattori T et al (2008) Vitreous prolapse through the scleral wound in 25-gauge transconjunctival vitrectomy. Eur J Ophthalmol 18:659–662CrossRefGoogle Scholar
  36. 36.
    Inoue Y, Kadonosono K, Yamakawa T et al (2009) Surgically-induced inflammation with 20-, 23-, and 25-gauge vitrectomy systems: an experimental study. Retina 29:477–480CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Miyahara Ophthalmological ClinicSaitama CityJapan
  2. 2.Department of OphthalmologyNihon University HospitalTokyoJapan

Personalised recommendations