International Ophthalmology

, Volume 39, Issue 9, pp 1955–1963 | Cite as

Normative Pentacam anterior and posterior corneal elevation measurements: effects of age, sex, axial length and white-to-white

  • Ignacio Almorín-Fernández-VigoEmail author
  • Inés Sánchez-Guillén
  • José I. Fernández-Vigo
  • Ana Macarro-Merino
  • Bachar Kudsieh
  • Cristina Fernández-Vigo
  • José A. Fernández-Vigo
Original Paper



To provide normal corneal elevation data for a large Caucasian population and to determine the impacts on these data of age, sex, axial length (AXL) and horizontal white-to-white (WW).


Centro Internacional de Oftalmología Avanzada, Madrid, Spain.


Retrospective, cross-sectional, observational.


In this retrospective, cross-sectional, observational study, anterior and posterior corneal elevations were measured in 789 right eyes of subjects with no ocular disease at the thinnest corneal location in relation to a fixed 8-mm best-fit sphere using the Pentacam, and AXL and WW were measured with the IOLMaster. A multiple linear regression model was used to assess the effects of age, sex, AXL and WW on the elevation data.


Mean subject age was 50.5 ± 15 years (range 17–93 years); 64% were women. Mean anterior and posterior corneal elevations were 1.99 ± 1.75 µm (− 7 to 10 µm) and 7.70 ± 5.7 µm (− 6 to 28 µm). Anterior corneal elevations were higher by 0.165 μm and 0.033 μm for every mm reduction in AXL and every year reduction in age, respectively. Sex and WW were not significant predictors of anterior elevations (R2 = 7.7%). Posterior corneal elevation increased by 0.186 μm/year of age, 0.707 μm/mm reduction in WW and 0.819 μm/mm reduction in AXL. This variable was also 0.866 μm greater in men (R2 = 34.4%).


Anterior corneal elevations decrease with age and are higher for shorter AXL but are not influenced by sex or WW. Posterior corneal elevations increase with age, decreasing AXL, decreasing WW and are higher in men.


Cornea Topography Pentacam Corneal elevation Keratoconus Population study 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Wen D, McAlinden C, Flitcroft I et al (2017) Postoperative efficacy, predictability, safety, and visual quality of laser corneal refractive surgery: a network meta-analysis. Am J Ophthalmol 178:65–78. CrossRefGoogle Scholar
  2. 2.
    Santhiago M, Giacomin N, Smadja D, Bechara S (2016) Ectasia risk factors in refractive surgery. Clin Ophthalmol 10:713–720. CrossRefGoogle Scholar
  3. 3.
    de Sanctis U, Loiacono C, Richiardi L et al (2008) Sensitivity and specificity of posterior corneal elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus. Ophthalmology 115:1534–1539. CrossRefGoogle Scholar
  4. 4.
    Ambrósio R, Faria-Correia F, Ramos I et al (2013) Enhanced screening for ectasia susceptibility among refractive candidates: the role of corneal tomography and biomechanics. Curr Ophthalmol Rep 1:28–38. CrossRefGoogle Scholar
  5. 5.
    Bae GH, Kim JR, Kim CH et al (2014) Corneal topographic and tomographic analysis of fellow eyes in unilateral keratoconus patients using Pentacam. Am J Ophthalmol 157(103–109):e1. Google Scholar
  6. 6.
    Gomes JA, Tan D, Rapuano CJ et al (2015) Global consensus on keratoconus and ectatic diseases. Cornea 34:359–369CrossRefGoogle Scholar
  7. 7.
    Kim JT, Cortese M, Belin MW, Ambrosio R Jr, Khachikian SS (2011) Tomographic normal values for corneal elevation and pachymetry in a hyperopic population. J Clin Exp Ophthalmol 2:130. Google Scholar
  8. 8.
    Ambrósio R, Randleman JB (2013) Screening for ectasia risk: what are we screening for and how should we screen for it? J Refract Surg 29:230–232. CrossRefGoogle Scholar
  9. 9.
    Kovács I, Miháltz K, Ecsedy M et al (2011) The role of reference body selection in calculating posterior corneal elevation and prediction of keratoconus using rotating Scheimpflug camera. Acta Ophthalmol (Copenh) 89:e251–e256. CrossRefGoogle Scholar
  10. 10.
    Henriquez MA, Izquierdo L, Dañin D (2014) Corneal elevation values in normal eyes, forme fruste keratoconus and keratoconus at different stages measured by Scheimpflug imaging. Int J Keratoconus Ectatic Corneal Dis 3:36–39. CrossRefGoogle Scholar
  11. 11.
    Muftuoglu O, Ayar O, Ozulken K et al (2013) Posterior corneal elevation and back difference corneal elevation in diagnosing forme fruste keratoconus in the fellow eyes of unilateral keratoconus patients. J Cataract Refract Surg 39:1348–1357. CrossRefGoogle Scholar
  12. 12.
    de Sanctis U, Aragno V, Dalmasso P et al (2013) Diagnosis of subclinical keratoconus using posterior elevation measured with 2 different methods. Cornea 32:911–915. CrossRefGoogle Scholar
  13. 13.
    Hernández-Camarena JC, Chirinos-Saldaña P, Navas A et al (2014) Repeatability, reproducibility, and agreement between three different Scheimpflug systems in measuring corneal and anterior segment biometry. J Refract Surg 30:616–621. CrossRefGoogle Scholar
  14. 14.
    Khachikian SS, Belin MW (2009) Posterior elevation in keratoconus. Ophthalmology 116:816CrossRefGoogle Scholar
  15. 15.
    Guilbert E, Saad A, Grise-Dulac A, Gatinel D (2012) Corneal thickness, curvature, and elevation readings in normal corneas: combined Placido–Scheimpflug system versus combined Placido–scanning-slit system. J Cataract Refract Surg 38:1198–1206. CrossRefGoogle Scholar
  16. 16.
    Smadja D, Santhiago MR, Mello GR et al (2013) Influence of the reference surface shape for discriminating between normal corneas, subclinical keratoconus, and keratoconus. J Refract Surg Thorofare NJ 29:274–281. CrossRefGoogle Scholar
  17. 17.
    Mostafa EM (2017) Comparison between corneal elevation maps using different reference surfaces with Scheimpflug–Placido topographer. Int Ophthalmol 37:553–558. CrossRefGoogle Scholar
  18. 18.
    Feng MT, Belin MW, Ambrósio R et al (2011) International values of corneal elevation in normal subjects by rotating Scheimpflug camera. J Cataract Refract Surg 37:1817–1821. CrossRefGoogle Scholar
  19. 19.
    Gilani F, Cortese M, Ambrósio RR et al (2013) Comprehensive anterior segment normal values generated by rotating Scheimpflug tomography. J Cataract Refract Surg 39:1707–1712. CrossRefGoogle Scholar
  20. 20.
    Ruiseñor Vázquez PR, Galletti JD, Minguez N et al (2014) Pentacam Scheimpflug tomography findings in topographically normal patients and subclinical keratoconus cases. Am J Ophthalmol 158(32–40):e2. Google Scholar
  21. 21.
    Hashemi H, Beiranvand A, Khabazkhoob M et al (2016) Corneal elevation and keratoconus indices in a 40- to 64-year-old population, Shahroud Eye Study. J Curr Ophthalmol 27:92–98. CrossRefGoogle Scholar
  22. 22.
    Orucoglu F, Toker E (2015) Comparative analysis of anterior segment parameters in normal and keratoconus eyes generated by Scheimpflug tomography. J Ophthalmol 2015:1–8. CrossRefGoogle Scholar
  23. 23.
    Correia FF, Ramos I, Lopes B et al (2012) Topometric and tomographic indices for the diagnosis of keratoconus. Int J Keratoconus Ectatic Corneal Dis 1:92–99CrossRefGoogle Scholar
  24. 24.
    Ying J, Wang Q, Belin MW et al (2016) Corneal elevation in a large number of myopic Chinese patients. Contact Lens Anterior Eye J Br Contact Lens Assoc 39:185–190. CrossRefGoogle Scholar
  25. 25.
    Muftuoglu O, Ayar O, Hurmeric V et al (2015) Comparison of multimetric D index with keratometric, pachymetric, and posterior elevation parameters in diagnosing subclinical keratoconus in fellow eyes of asymmetric keratoconus patients. J Cataract Refract Surg 41:557–565. CrossRefGoogle Scholar
  26. 26.
    Gatinel D, Malet J, Hoang-Xuan T, Azar DT (2011) Corneal elevation topography: best fit sphere, elevation distance, asphericity, toricity and clinical implications. Cornea 30:508–515. CrossRefGoogle Scholar
  27. 27.
    Mahroo OA, Oomerjee M, Williams KM et al (2014) High heritability of posterior corneal tomography, as measured by Scheimpflug imaging, in a twin study. Invest Ophthalmol Vis Sci 55:8359–8364. CrossRefGoogle Scholar
  28. 28.
    López-Montemayor P, Valdez-García JE, Loya-García D, Hernandez-Camarena JC (2017) Safety, efficacy and refractive outcomes of LASIK surgery in patients aged 65 or older. Int Ophthalmol. Google Scholar
  29. 29.
    Hashemi M, Falavarjani KG, Aghai GH et al (2013) Anterior segment study with the Pentacam Scheimpflug camera in refractive surgery candidates. Middle East Afr J Ophthalmol 20:212. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Centro Internacional de Oftalmología AvanzadaBadajozSpain
  2. 2.Centro Internacional de Oftalmología AvanzadaMadridSpain
  3. 3.Department of OphthalmologyHospital Clínico San CarlosMadridSpain
  4. 4.Department of OphthalmologyHospital Puerta de HierroMadridSpain
  5. 5.School of MedicineUniversidad de ExtremaduraBadajozSpain

Personalised recommendations