Advertisement

International Ophthalmology

, Volume 39, Issue 9, pp 1939–1947 | Cite as

Three-dimensional surface presentation of optic nerve head from SPECTRALIS OCT images: observing glaucoma patients

  • Abdel-Razzak M. Al-hinnawiEmail author
  • Arqam M. Alqasem
  • Bassam O. Al-Naami
Original Paper
  • 108 Downloads

Abstract

Purpose

To propose an innovative three-dimensional surface presentation of the optic nerve head (ONH) from the SPECTRALIS optical coherence tomography (OCT) device.

Method

A dataset of OCT ONH files from eight glaucoma follow-up patients was obtained. The set consisted of OCT ONH images for 20 right eyes (OD) and 17 left eyes (OS). Preprocessing steps followed with OCT reconstruction procedures were designed. The three-dimensional (3D) surface rendering was generated for all OCT ONH images. A set of eight International Organization for Standardization (ISO) roughness parameters were calculated to assess the disparities in the 3D ONH surface morphology during follow-up visit.

Results

The 3D ONH surface presents a new OCT display to ophthalmology; so, the physician can examine the surface morphology of the OCT ONH region. The 3D ONH surface’s shape varied noticeably during follow-up visits in glaucoma patients. The percentage disparity of ONH surface roughness’s can be as small as 3% or almost zero, but it can be as large as 56% or 100%.

Conclusions

The approximation of OCT ONH 3D surface is feasible; it may possibly be beneficial to ophthalmology. It allows ophthalmologist to perceive the entire changes in the ONH surface morphology during the follow-up attendances; so, it can be used to observe patient health. The ISO roughness measurements are suggestive complementary factors to observe the alterations in the OCT ONH region.

Keywords

Optical coherence tomography Optic nerve head 3D surface visualization Glaucoma 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The subjects in this experiment are retrospective OCT studies. The identifications of patients were removed from all patient’s OCT files so they become anonymous OCT files.

Supplementary material

10792_2018_1023_MOESM1_ESM.avi (2.1 mb)
Supplementary material 1 (AVI 2172 kb)
10792_2018_1023_MOESM2_ESM.avi (356 kb)
Supplementary material 2 (AVI 355 kb)
10792_2018_1023_MOESM3_ESM.avi (3.9 mb)
Supplementary material 3 (AVI 4026 kb)
10792_2018_1023_MOESM4_ESM.avi (1.2 mb)
Supplementary material 4 (AVI 1222 kb)

References

  1. 1.
    Frecher AF, Mengedoht K, Werner W (1988) Eye-length measurement by interferometry with partially coherent light. Opt Lett 13(3):186–188CrossRefGoogle Scholar
  2. 2.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Opt Coherence Tomogr. Science 254(5035):1178–1181CrossRefGoogle Scholar
  3. 3.
    Gelikonov VM, Gelikonov GV, Dolin LS, Kamensky VA, Sergeev AM, Shakhova NM, Galdkova ND, Zagaynova EV (2003) Optical coherence tomography: physical principles and applications. Laser Phys 13:692–702Google Scholar
  4. 4.
    Gabriele ML, Wollstein G, Ishikawa H, Kagemann L, Xu J, Folio LS, Schuman JS (2011) Optical coherence tomography: history, current status, and laboratory work. Investig Ophthalmol Vis Sci 52(5):2425–2436CrossRefGoogle Scholar
  5. 5.
    Bussel II, Wollstein G, Schuman JS (2014) OCT for glaucoma diagnosis, screening, and detection of glaucoma progression. Br J Ophthalmol 98(Supplement):ii15–ii19CrossRefGoogle Scholar
  6. 6.
    Töteberg-Harms M, Sturm V, Knecht PB, Funk J, Menke MN (2012) Repeatability of nerve fiber layer thickness measurements in patients with glaucoma and without glaucoma using spectral-domain and time-domain OCT. Graefes Arch Clin Exp Ophthalmol 250:279–287CrossRefGoogle Scholar
  7. 7.
    Firat PG, Doganay S, Demirel EE, Colak C (2013) Comparison of ganglion cell and retinal nerve fiber layer thickness in primary open-angle glaucoma and normal tension glaucoma with spectral-domain OCT. Graefes Arch Clin Exp Ophthalmol 251:831–838CrossRefGoogle Scholar
  8. 8.
    Savini G, Carbonelli M, Parisi V, Barboni P (2011) Repeatability of optic nerve head parameters measured by spectral-domain OCT in healthy eyes. Ophthalmic Surg Lasers Imaging 42:209–215CrossRefGoogle Scholar
  9. 9.
    Al-Hinnawi AM, Al-Naami BO, Al-Latayfeh MM (2017) Optic nerve head slope-based quantitative parameters for identifying open-angle glaucoma on SPECTRALIS OCT images. Int Ophthalmol 37:979–988CrossRefGoogle Scholar
  10. 10.
    Aref AA, Budenz DL (2010) Spectral Domain optical coherence tomography in the diagnosis and management of glaucoma. Ophthalmic Surg Lasers Imaging 41(Suppl.):S15–S27CrossRefGoogle Scholar
  11. 11.
    Litjens G, Kooi T, Babak Bejnordi E, Setio AA, Ciompi F, Ghafoorian M, van der Laak JAWM, Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefGoogle Scholar
  12. 12.
    Wang B, Wollstein G, Schuman JS (2016) Optic nerve: optical coherence tomography. Pearls of Glaucoma Management. Springer, Berlin, pp 51–61CrossRefGoogle Scholar
  13. 13.
    Ahdi A, Rabbani H, Vard A (2017) A hybrid method for 3D mosaicing of OCT images of macula and optic nerve head. Comput Biol Med.  https://doi.org/10.1016/j.compbiomed.2017.10.031 Google Scholar
  14. 14.
    Shoji T, Kuroda H, Suzuki M, Baba M, Araie M, Yoneya S (2015) Three-dimensional optic nerve head images using optical coherence tomography with a broad bandwidth, femtosecond, and mode-locked laser. Graefes Arch Clin Exp Ophthalmol 253:313–321CrossRefGoogle Scholar
  15. 15.
    Kagemann L, Isikawa H, Wollstein G, Gabriele M, Schuman JS (2009) Visualization of 3D high speed ultrahigh resolution optical coherence tomographic data identifies structures visible in 2D frames. Opt Express 17(5):4208–4220CrossRefGoogle Scholar
  16. 16.
    Zawadzki RJ, Fullerb AR, Choia SS, Wiley DF, Hamann B, Wernera JS (2008) Improved representation of retinal data acquired with volumetric Fd-OCT: co-registration, visualization and reconstruction of a large field of view. Proc SPIE.  https://doi.org/10.1117/12.764070 Google Scholar
  17. 17.
    ISO 4287:2000 Geometrical product specification (GPS)—Surface texture. Profile method. Terms, definitions and surface texture parametersGoogle Scholar
  18. 18.
    ISO 25178-2:2012 Geometrical product specifications (GPS) - Surface texture: areal - Part 2: terms, definitions and surface texture parametersGoogle Scholar
  19. 19.
    Yousefi S, Goldbaum MH, Balasubramanian M, Jung T, Weinreb RN, Medeiros FA, Zangwill LM, Liebmann JM, Girkin CA, Bowd C (2013) Glaucoma progression detection using structural retinal nerve fiber layer measurements and functional visual field points. IEEE Trans Biomed Eng 00:1–12Google Scholar
  20. 20.
    Koprowski R, Rzendkowski M, Wróbel Z (2014) Automatic method of analysis of OCT images in assessing the severity degree of glaucoma and the visual field loss. BioMed Eng (Online)  https://doi.org/10.1186/1475-925x-13-16

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Abdel-Razzak M. Al-hinnawi
    • 1
    Email author
  • Arqam M. Alqasem
    • 2
  • Bassam O. Al-Naami
    • 3
  1. 1.Faculty of Allied Health Sciences, Medical Imaging DepartmentThe Hashemite UniversityZarqaJordan
  2. 2.ISHRAQ Eye CentreAmmanJordan
  3. 3.Faculty of Biomedical EngineeringThe Hashemite UniversityZarqaJordan

Personalised recommendations