Advertisement

International Ophthalmology

, Volume 39, Issue 4, pp 861–871 | Cite as

Aqueous humor protein dysregulation in primary angle-closure glaucoma

  • Sunil S. Adav
  • Jin Wei
  • Jingru Qian
  • Nicola Yi’An Gan
  • Leonard W. L. YipEmail author
  • Siu Kwan SzeEmail author
Original Paper

Abstract

Purpose

Primary angle-closure glaucoma (PACG) is associated with increased intraocular pressure, optic nerve damage, and progressive vision loss, but the molecular mechanism that underpins retinal ganglion neuropathy in PACG remains poorly understood. To better understand the pathogenesis of human PACG, we performed the first comprehensive proteomic analysis of aqueous humor (AH) samples from PACG patients and matched control donors to study pathogenic alteration in AH composition in disease.

Methods

High-resolution, label-free, liquid chromatography–tandem mass spectrometry-based quantitative proteomic analyses were performed in AH samples collected from PACG patients and a matched control cohort of patients with cataracts.

Results

The AH proteome comprised of 1363 distinct proteins, of which more than 50% were differentially expressed in PACG (773 total; 501 up-regulated, 272 down-regulated). AH from PACG patients was enriched in atypical collagens and fibronectins, suggesting that the composition of the trabecular matrix is significantly altered in disease. Pathway and cluster analyses revealed that AH protein modulation in PACG is closely associated with biological processes including platelet degranulation, cellular import/export mechanisms, and control of protease activity. In addition, critical mediators of oxygen homeostasis and neuronal function in AH were significantly dysregulated in disease, strongly implicating oxidative stress responses in PACG-associated nerve damage.

Conclusions

Altered AH proteome in human PACG indicated oxidative stress in the neuronal damage that preceded vision loss. Identifying key mediators of PACG pathology will yield new prognostic biomarkers and novel targets for future therapeutic interventions.

Keywords

Glaucoma Aqueous humor Proteomics Primary angle-closure glaucoma ApoE 

Notes

Acknowledgements

This work is in part supported by grants from the Singapore Ministry of Education (MOE2014-T2-2-043 and MOE2016-T2-2-018), the National Medical Research Council of Singapore (NMRC-OF-IRG-0003-2016), and National Healthcare Group Small Innovative Grant (Grant # 13018).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

This study was in agreement with the Declaration of Helsinki and approved by the Institutional Review Board at the Tan Tock Seng Hospital (TTSH). Informed consent was obtained from each patient.

Supplementary material

10792_2018_885_MOESM1_ESM.xlsx (724 kb)
Supplementary material 1 (XLSX 723 kb)
10792_2018_885_MOESM2_ESM.xlsx (440 kb)
Supplementary material 2 (XLSX 440 kb)
10792_2018_885_MOESM3_ESM.docx (148 kb)
Supplementary material 3 (DOCX 148 kb)

References

  1. 1.
    Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267CrossRefGoogle Scholar
  2. 2.
    Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11):2081–2090CrossRefGoogle Scholar
  3. 3.
    Quigley HA, Friedman DS, Congdon NG (2003) Possible mechanisms of primary angle-closure and malignant glaucoma. J Glaucoma 12(2):167–180CrossRefGoogle Scholar
  4. 4.
    Heijl A, Leske M, Bengtsson B et al (2002) Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol 120(10):1268–1279CrossRefGoogle Scholar
  5. 5.
    Sacca SC, Gandolfi S, Bagnis A, Manni G, Damonte G, Traverso CE, Izzotti A (2016) The outflow pathway: a tissue with morphological and functional unity. J Cell Physiol 231(9):1876–1893CrossRefGoogle Scholar
  6. 6.
    Izzotti A, Sacca SC, Longobardi M, Cartiglia C (2009) Sensitivity of ocular anterior chamber tissues to oxidative damage and its relevance to the pathogenesis of glaucoma. Invest Ophthalmol Vis Sci 50(11):5251–5258CrossRefGoogle Scholar
  7. 7.
    Tripathi RC, Millard CB, Tripathi BJ (1989) Protein composition of human aqueous humor: SDS-PAGE analysis of surgical and post-mortem samples. Exp Eye Res 48(1):117–130CrossRefGoogle Scholar
  8. 8.
    Faria SS, Morris CF, Silva AR, Fonseca MP, Forget P, Castro MS, Fontes W (2017) A timely shift from shotgun to targeted proteomics and how it can be groundbreaking for cancer research. Front Oncol 7:13CrossRefGoogle Scholar
  9. 9.
    Ji Y, Rong X, Ye H, Zhang K, Lu Y (2015) Proteomic analysis of aqueous humor proteins associated with cataract development. Clin Biochem 48(18):1304–1309CrossRefGoogle Scholar
  10. 10.
    Yao J, Chen Z, Yang Q, Liu X, Chen X, Zhuang M, Liu Q (2013) Proteomic analysis of aqueous humor from patients with branch retinal vein occlusion-induced macular edema. Int J Mol Med 32(6):1421–1434CrossRefGoogle Scholar
  11. 11.
    Yao J, Liu X, Yang Q, Zhuang M, Wang F, Chen X, Hang H, Zhang W, Liu Q (2013) Proteomic analysis of the aqueous humor in patients with wet age-related macular degeneration. Proteomics Clin Appl 7(7–8):550–560CrossRefGoogle Scholar
  12. 12.
    Duan X, Lu Q, Xue P, Zhang H, Dong Z, Yang F, Wang N (2008) Proteomic analysis of aqueous humor from patients with myopia. Mol Vis 14:370–377Google Scholar
  13. 13.
    Funding M, Vorum H, Honore B, Nexo E, Ehlers N (2005) Proteomic analysis of aqueous humour from patients with acute corneal rejection. Acta Ophthalmol Scand 83(1):31–39CrossRefGoogle Scholar
  14. 14.
    Richardson MR, Price MO, Price FW, Pardo JC, Grandin JC, You J, Wang M, Yoder MC (2009) Proteomic analysis of human aqueous humor using multidimensional protein identification technology. Mol Vis 15:2740–2750Google Scholar
  15. 15.
    Rohde E, Tomlinson AJ, Johnson DH, Naylor S (1998) Comparison of protein mixtures in aqueous humor by membrane preconcentration-capillary electrophoresis-mass spectrometry. Electrophoresis 19(13):2361–2370CrossRefGoogle Scholar
  16. 16.
    Vignali DA (2000) Multiplexed particle-based flow cytometric assays. J Immunol Methods 243(1–2):243–255CrossRefGoogle Scholar
  17. 17.
    Cheow ES, Cheng WC, Lee CN, de Kleijn D, Sorokin V, Sze SK (2016) Plasma-derived extracellular vesicles contain predictive biomarkers and potential therapeutic targets for myocardial ischemic (MI) injury. Mol Cell Proteomics 15(8):2628–2640CrossRefGoogle Scholar
  18. 18.
    Adav SS, Hwa HH, de Kleijn D, Sze SK (2015) Improving blood plasma glycoproteome coverage by coupling ultracentrifugation fractionation to electrostatic repulsion-hydrophilic interaction chromatography enrichment. J Proteome Res 14(7):2828–2838CrossRefGoogle Scholar
  19. 19.
    Kall L, Canterbury JD, Weston J, Noble WS, MacCoss MJ (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4(11):923–925CrossRefGoogle Scholar
  20. 20.
    Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP (2006) GenePattern 2.0. Nat Genet 38(5):500–501CrossRefGoogle Scholar
  21. 21.
    Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD (2017) PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucl Acids Res 45(D1):D183–D189CrossRefGoogle Scholar
  22. 22.
    Mi H, Thomas P (2009) PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. In: Nikolsky Y, Bryant J (eds) Protein networks and pathway analysis. Humana Press, Totowa, pp 123–140CrossRefGoogle Scholar
  23. 23.
    Duan X, Xue P, Wang N, Dong Z, Lu Q, Yang F (2010) Proteomic analysis of aqueous humor from patients with primary open angle glaucoma. Mol Vis 16:2839–2846Google Scholar
  24. 24.
    Kaeslin MA, Killer HE, Fuhrer CA, Zeleny N, Huber AR, Neutzner A (2016) Changes to the aqueous humor proteome during glaucoma. PLoS ONE 11(10):e0165314CrossRefGoogle Scholar
  25. 25.
    Anshu A, Price MO, Richardson MR, Segu ZM, Lai X, Yoder MC, Price FW Jr (2011) Alterations in the aqueous humor proteome in patients with a glaucoma shunt device. Mol Vis 17:1891–1900Google Scholar
  26. 26.
    Rosenfeld C, Price MO, Lai X, Witzmann FA, Price FW Jr (2015) Distinctive and pervasive alterations in aqueous humor protein composition following different types of glaucoma surgery. Mol Vis 21:911–918Google Scholar
  27. 27.
    Mendez-Hernandez C, Garcia-Feijoo J, Arribas-Pardo P, Saenz-Frances F, Rodriguez-Una I, Fernandez-Perez C, Gonzalez de la Rosa M (2016) Reproducibility of optic nerve head hemoglobin measures. J Glaucoma 25(4):348–354CrossRefGoogle Scholar
  28. 28.
    Tezel G, Yang X, Luo C, Cai J, Kain AD, Powell DW, Kuehn MH, Pierce WM (2010) Hemoglobin expression and regulation in glaucoma: insights into retinal ganglion cell oxygenation. Invest Ophthalmol Visual Sci 51(2):907–919CrossRefGoogle Scholar
  29. 29.
    Tezel G, Yang X, Luo C, Cai J, Kain AD, Powell DW, Kuehn MH, Pierce WM (2010) Hemoglobin expression and regulation in glaucoma: insights into retinal ganglion cell oxygenation. Invest Ophthalmol Vis Sci 51(2):907–919CrossRefGoogle Scholar
  30. 30.
    Liu W, Baker SS, Baker RD, Nowak NJ, Zhu L (2011) Upregulation of hemoglobin expression by oxidative stress in hepatocytes and its implication in nonalcoholic steatohepatitis. PLoS ONE 6(9):e24363CrossRefGoogle Scholar
  31. 31.
    Tezel G, Wax MB (2004) Hypoxia-inducible factor 1alpha in the glaucomatous retina and optic nerve head. Arch Ophthalmol 122(9):1348–1356CrossRefGoogle Scholar
  32. 32.
    Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578CrossRefGoogle Scholar
  33. 33.
    Nickells RW, Howell GR, Soto I, John SW (2012) Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci 35:153–179CrossRefGoogle Scholar
  34. 34.
    Cunin P, Beauvillain C, Miot C, Augusto JF, Preisser L, Blanchard S, Pignon P, Scotet M, Garo E, Fremaux I et al (2016) Clusterin facilitates apoptotic cell clearance and prevents apoptotic cell-induced autoimmune responses. Cell Death Dis 7(5):e2215CrossRefGoogle Scholar
  35. 35.
    Spector A, Garner WH (1981) Hydrogen peroxide and human cataract. Exp Eye Res 33(6):673–681CrossRefGoogle Scholar
  36. 36.
    Goyal A, Srivastava A, Sihota R, Kaur J (2014) Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients. Curr Eye Res 39(8):823–829CrossRefGoogle Scholar
  37. 37.
    Miric DJ, Kisic BM, Zoric LD, Miric BM, Mirkovic M, Mitic R (2014) Influence of cataract maturity on aqueous humor lipid peroxidation markers and antioxidant enzymes. Eye (Lond) 28(1):72–77CrossRefGoogle Scholar
  38. 38.
    Laganovska G, Martinsons A, Pitrans B, Widner B, Fuchs D (2003) Kynurenine and neopterin in the aqueous humor of the anterior chamber of the eye and in serum of cataract patients. Adv Exp Med Biol 527:367–374CrossRefGoogle Scholar
  39. 39.
    Huang W, Chen S, Gao X, Yang M, Zhang J, Li X, Wang W, Zhou M, Zhang X, Zhang X (2014) Inflammation-related cytokines of aqueous humor in acute primary angle-closure eyes. Invest Ophthalmol Vis Sci 55(2):1088–1094CrossRefGoogle Scholar
  40. 40.
    Du S, Huang W, Zhang X, Wang J, Wang W, Lam DS (2016) Multiplex cytokine levels of aqueous humor in acute primary angle-closure patients: fellow eye comparison. BMC Ophthalmol 16(1):6CrossRefGoogle Scholar
  41. 41.
    Sacca SC, Pulliero A, Izzotti A (2015) The dysfunction of the trabecular meshwork during glaucoma course. J Cell Physiol 230(3):510–525CrossRefGoogle Scholar
  42. 42.
    Stein I, Neeman M, Shweiki D, Itin A, Keshet E (1995) Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol 15(10):5363–5368CrossRefGoogle Scholar
  43. 43.
    Zenkel M, Poschl E, von der Mark K, Hofmann-Rummelt C, Naumann GO, Kruse FE, Schlotzer-Schrehardt U (2005) Differential gene expression in pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci 46(10):3742–3752CrossRefGoogle Scholar
  44. 44.
    Nowak A, Przybylowska-Sygut K, Gacek M, Kaminska A, Szaflik JP, Szaflik J, Majsterek I (2015) Neurodegenerative genes polymorphisms of the -491A/T APOE, the -877T/C APP and the Risk of primary open-angle glaucoma in the polish population. Ophthalmic Genet 36(2):105–112CrossRefGoogle Scholar
  45. 45.
    Inoue T, Kawaji T, Tanihara H (2013) Elevated levels of multiple biomarkers of Alzheimer’s disease in the aqueous humor of eyes with open-angle glaucoma. Invest Ophthalmol Vis Sci 54(8):5353–5358CrossRefGoogle Scholar
  46. 46.
    Al-Dabbagh NM, Al-Dohayan N, Arfin M, Tariq M (2009) Apolipoprotein E polymorphisms and primary glaucoma in Saudis. Mol Vis 15:912–919Google Scholar
  47. 47.
    Grayson C, Reid SNM, Ellis JA, Rutherford A, Sowden JC, Yates JRW, Farber DB, Trump D (2000) Retinoschisin, the X-linked retinoschisis protein, is a secreted photoreceptor protein, and is expressed and released by Weri-Rb1 cells. Hum Mol Genet 9(12):1873–1879CrossRefGoogle Scholar
  48. 48.
    Molday LL, Hicks D, Sauer CG, Weber BH, Molday RS (2001) Expression of X-linked retinoschisis protein RS1 in photoreceptor and bipolar cells. Invest Ophthalmol Vis Sci 42(3):816–825Google Scholar
  49. 49.
    Ou J, Vijayasarathy C, Ziccardi L, Chen S, Zeng Y, Marangoni D, Pope JG, Bush RA, Wu Z, Li W et al (2015) Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer. J Clin Invest 125(7):2891–2903CrossRefGoogle Scholar
  50. 50.
    Murthy KR, Rajagopalan P, Pinto SM, Advani J, Murthy PR, Goel R, Subbannayya Y, Balakrishnan L, Dash M, Anil AK et al (2015) Proteomics of human aqueous humor. OMICS 19(5):283–293CrossRefGoogle Scholar
  51. 51.
    Vizcaíno JA, Côté RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J (2013) The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucl Acids Res 41(D1):D1063–D1069CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Sunil S. Adav
    • 1
  • Jin Wei
    • 1
    • 2
  • Jingru Qian
    • 1
  • Nicola Yi’An Gan
    • 3
  • Leonard W. L. Yip
    • 3
    Email author
  • Siu Kwan Sze
    • 1
    Email author
  1. 1.School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
  2. 2.Eye CenterRenmin Hospital of Wuhan UniversityWuhanPeople’s Republic of China
  3. 3.Department of Ophthalmology, National Healthcare Group Eye InstituteTan Tock Seng HospitalSingaporeSingapore

Personalised recommendations