International Ophthalmology

, Volume 39, Issue 10, pp 2245–2256 | Cite as

Retinal vascular density evaluated by optical coherence tomography angiography in macular telangiectasia type 2

  • Berna DoganEmail author
  • Muhammet Kazim Erol
  • Melih Akidan
  • Elcin Suren
  • Yusuf Akar
Original Paper



To evaluate the retinal and choroidal vascular changes through optical coherence tomography angiography (OCTA) in patients with macular telangiectasia type 2 (MacTel 2).


Our study included 20 patients (40 eyes) with MacTel 2, and age-matched and sex-matched 18 subjects (36 eyes) in the control group. Fundus color photographs, fundus autofluorescence, fundus fluorescein angiography, spectral-domain optical coherence tomography and OCTA were performed. Foveal vascular density and parafoveal vascular density (PFVD), and foveal retinal thickness and parafoveal retinal thickness, choroidal thickness (CT) and retinal ganglion cell–inner plexiform layer (GCIPL) were compared between MacTel 2 patients and normal age-matched controls.


The retinal whole vascular density and PFVD of the deep plexus were significantly lower in patients with MacTel 2 than that of the control group (56.93% vs. 58.54%, p = 0.003; and 60.38% vs. 61.66%, p = 0.045). The foveal avascular zone (FAZ) of the deep plexus was significantly enlarged in patients with MacTel 2 than that of the control group (0.44 vs. 0.36, p = 0.009). There was a positive and statistically significant correlation between the FAZ of the superficial and deep plexus and CT in patients with MacTel 2. There was a positive and statistically significant correlation between retinal whole, parafoveal temporal quadrant vascular density of the superficial and deep plexus and GCIPL thickness in patients with MacTel 2.


Our study demonstrated that important retinal vascular density and FAZ changes in MacTel 2 occur in the deep capillary plexus of the retina.


Optical coherence tomography angiography Macular telangiectasia type 2 Vascular density Retinal ganglion cell–inner plexiform layer Choroidal thickness 


Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Yannuzzi LA, Bardal AM, Freund KB, Chen KJ, Eandi CM, Blodi B (2006) Idiopathic macular telangiectasia. Arch Ophthalmol 124(4):450–460CrossRefGoogle Scholar
  2. 2.
    Gass JD, Oyakawa RT (1982) Idiopathic juxtafoveolar retinal telangiectasis. Arch Ophthalmol 100(5):769–780CrossRefGoogle Scholar
  3. 3.
    Wu L, Evans T, Arevalo JF (2013) Idiopathic macular telangiectasia type 2 (idiopathic juxtafoveolar retinal telangiectasis type 2A, Mac Tel 2). Surv Ophthalmol 58(6):536–559CrossRefGoogle Scholar
  4. 4.
    Maruko I, Iida T, Sekiryu T, Fujiwara T (2008) Early morphological changes and functional abnormalities in group 2A idiopathic juxtafoveolar retinal telangiectasis using spectral domain optical coherence tomography and microperimetry. Br J Ophthalmol 92(11):1488–1491CrossRefGoogle Scholar
  5. 5.
    Albini TA, Benz MS, Coffee RE, Westfall AC, Lakhanpal RR, McPherson AR, Holz ER (2006) Optical coherence tomography of idiopathic juxtafoveolar telangiectasia. Ophthalmic Surg Lasers Imaging 37(2):120–128CrossRefGoogle Scholar
  6. 6.
    Paunescu LA, Ko TH, Duker JS, Chan A, Drexler W, Schuman JS, Fujimoto JG (2006) Idiopathic juxtafoveal retinal telangiectasis: new findings by ultrahigh-resolution optical coherence tomography. Ophthalmology 113(1):48–57CrossRefGoogle Scholar
  7. 7.
    Thorell MR, Zhang Q, Huang Y, An L, Durbin MK, Laron M, Sharma U, Stetson PF, Gregori G, Wang RK, Rosenfeld PJ (2014) Swept-source OCT angiography of macular telangiectasia type 2. Ophthalmic Surg Lasers Imaging Retina 45(5):369–380CrossRefGoogle Scholar
  8. 8.
    Chidambara L, Gadde SG, Yadav NK, Jayadev C, Bhanushali D, Appaji AM, Akkali M, Khurana A, Shetty R (2016) Characteristics and quantification of vascular changes in macular telangiectasia type 2 on optical coherence tomography angiography. Br J Ophthalmol 100(11):1482–1488CrossRefGoogle Scholar
  9. 9.
    de Carlo TE, Romano A, Waheed NK, Duker JS (2015) A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous 1:5CrossRefGoogle Scholar
  10. 10.
    Toto L, Di Antonio L, Mastropasqua R, Mattei PA, Carpineto P, Borrelli E, Rispoli M, Lumbroso B, Mastropasqua L (2016) Multimodal imaging of macular telangiectasia type 2: focus on vascular changes using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(9):OCT268–OCT276CrossRefGoogle Scholar
  11. 11.
    Zhang Q, Wang RK, Chen CL, Legarreta AD, Durbin MK, An L, Sharma U, Stetson PF, Legarreta JE, Roisman L, Gregori G, Rosenfeld PJ (2015) Swept source OCT angiography of neovascular macular telangiectasia type 2. Retina 35(11):2285–2299CrossRefGoogle Scholar
  12. 12.
    Roisman L, Rosenfeld PJ (2016) Optical coherence tomography angiography of macular telangiectasia type 2. Dev Ophthalmol 56:146–158CrossRefGoogle Scholar
  13. 13.
    Spaide RF, Klancnik JM, Cooney MJ (2015) Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography. JAMA Ophthalmol 133(1):66–73CrossRefGoogle Scholar
  14. 14.
    Gass JDM (1997) Stereoscopic atlas of macular diseases: diagnosis and treatment, vol 1, 4th edn. Mosby, St LouisGoogle Scholar
  15. 15.
    Koizumi H, Slakter JS, Spaide RF (2007) Full-thickness macular hole formation in idiopathic parafoveal telangiectasis. Retina 27(4):473–476CrossRefGoogle Scholar
  16. 16.
    Cohen SM, Cohen ML, El-Jabali F, Pautler SE (2007) Optical coherence tomography findings in nonproliferative group 2a idiopathic juxtafoveal retinal telangiectasis. Retina 27(1):59–66CrossRefGoogle Scholar
  17. 17.
    Powner MB, Gillies MC, Zhu M, Vevis K, Hunyor AP, Fruttiger M (2013) Loss of Muller’s cells and photoreceptors in macular telangiectasia type 2. Ophthalmology 120(11):2344–2352CrossRefGoogle Scholar
  18. 18.
    Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A (2009) Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 28(6):423–451CrossRefGoogle Scholar
  19. 19.
    Unterlauft JD, Eichler W, Kuhne K, Yang XM, Yafai Y, Wiedemann P, Reichenbach A, Claudepierre T (2012) Pigment epithelium-derived factor released by Müller glial cells exerts neuroprotective effects on retinal ganglion cells. Neurochem Res 37(7):1524–1533CrossRefGoogle Scholar
  20. 20.
    Fletcher EL, Downie LE, Ly A, Ward MM, Batcha AH, Puthussery T, Yee P, Hatzopoulos KM (2008) A review of the role of glial cells in understanding retinal disease. Clin Exp Optom 91(1):67–77CrossRefGoogle Scholar
  21. 21.
    Newman EA (1993) Inward-rectifying potassium channels in retinal glial (Müller) cells. J Neurosci 13(8):3333–3345CrossRefGoogle Scholar
  22. 22.
    Wahlin KJ, Campochiaro PA, Zack DJ, Adler R (2000) Neurotrophic factors cause activation of intracellular signaling pathways in Müller cells and other cells of the inner retina, but not photoreceptors. Invest Ophthalmol Vis Sci 41(3):927–936PubMedGoogle Scholar
  23. 23.
    Behzadian MA, Wang XL, Al-Shabrawey M, Caldwell RB (1998) Effects of hypoxia on glial cell expression of angiogenesis-regulating factors VEGF and TGF-beta. Glia 24(2):216–225CrossRefGoogle Scholar
  24. 24.
    Bai Y, Ma JX, Guo J, Wang J, Zhu M, Chen Y, Le YZ (2009) Müller cell-derived VEGF is a significant contributor to retinal neovascularization. J Pathol 219(4):446–454CrossRefGoogle Scholar
  25. 25.
    Shen W, Fruttiger M, Zhu L, Chung SH, Barnett NL, Kirk JK, Lee S, Coorey NJ, Killingsworth M, Sherman LS, Gillies MC (2012) Conditional Müller cell ablation causes independent neuronal and vascular pathologies in a novel transgenic model. J Neurosci 32(45):15715–15727CrossRefGoogle Scholar
  26. 26.
    Rodrigues M, Xin X, Jee K, Babapoor-Farrokhran S, Kashiwabuchi F, Ma T, Bhutto I, Hassan SJ, Daoud Y, Baranano D, Solomon S, Lutty G, Semenza GL, Montaner S, Sodhi A (2013) VEGF secreted by hypoxic Müller cells induces MMP-2 expression and activity in endothelial cells to promote retinal neovascularization in proliferative diabetic retinopathy. Diabetes 62(11):3863–3873CrossRefGoogle Scholar
  27. 27.
    Gass JD, Blodi BA (1993) Idiopathic juxtafoveolar retinal telangiectasis: update of classification and follow-up study. Ophthalmology 100(10):1536–1546CrossRefGoogle Scholar
  28. 28.
    Engelbrecht NE, Aaberg TM Jr, Sung J, Lewis ML (2002) Neovascular membranes associated with idiopathic juxtafoveolar telangiectasis. Arch Ophthalmol 120(3):320–324CrossRefGoogle Scholar
  29. 29.
    Chhablani J, Kozak I, Jonnadula GB, Venkata A, Narayanan R, Pappuru RR, Rao PS (2014) Choroidal thickness in macular telangiectasia type 2. Retina 34(9):1819–1823CrossRefGoogle Scholar
  30. 30.
    Nunes RP, Goldhardt R, de Amorim CA, Thorell MR, Abbey AM, Kuriyan AE, Modi YS, Shah M, Yehoshua Z, Gregori G, Feuer W, Rosenfeld PJ (2015) Spectral-domain optical coherence tomography measurements of choroidal thickness and outer retinal disruption in macular telangiectasia type 2. Ophthalmic Surg Lasers Imaging Retina 46(2):162–170CrossRefGoogle Scholar
  31. 31.
    Kumar V, Kumar P, Ravani R, Gupta P (2018) Macular telangiectasia type II with pachychoroid spectrum of macular disorders. Eur J Ophthalmol 1:1120672118769527. CrossRefGoogle Scholar
  32. 32.
    Spaide RF, Suzuki M, Yannuzzi LA, Matet A, Behar-Cohen F (2017) Volume-rendered angiographic and structural optical coherence tomography angiography of macular telangiectasia type 2. Retina 37(3):424–435CrossRefGoogle Scholar
  33. 33.
    Mao L, Weng SS, Gong YY, Yu SQ (2017) Optical coherence tomography angiography of macular telangiectasia type 1: comparison with mild diabetic macular edema. Lasers Surg Med 49(3):225–232CrossRefGoogle Scholar
  34. 34.
    Yu DY, Cringle SJ, Balaratnasingam C, Morgan WH, Yu PK, Su EN (2013) Retinal ganglion cells: energetics, compartmentation, axonal transport, cytoskeletons and vulnerability. Prog Retin Eye Res 36:217–246CrossRefGoogle Scholar
  35. 35.
    García-Ayuso D, Salinas-Navarro M, Agudo-Barriuso M, Alarcón-Martínez L, Vidal-Sanz M, Villegas-Pérez MP (2011) Retinal ganglion cell axonal compression by retinal vessels in light-induced retinal degeneration. Mol Vis 17:1716–1733PubMedPubMedCentralGoogle Scholar
  36. 36.
    Garcia JM, Lima TT, Louzada RN, Rassi AT, Isaac DL, Avila M (2016) Diabetic macular ischemia diagnosis: comparison between optical coherence tomography angiography and fluorescein angiography. J Ophthalmol 2016:3989310PubMedPubMedCentralGoogle Scholar
  37. 37.
    Jhingan M, Marsonia K, Shukla D, Rosenfeld PJ, Chhablani J (2017) Idiopathic macular telangiectasis type 2 and co-existent diabetic retinopathy. Int J Retina Vitreous 25(3):50CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Berna Dogan
    • 1
    Email author
  • Muhammet Kazim Erol
    • 1
  • Melih Akidan
    • 2
  • Elcin Suren
    • 1
  • Yusuf Akar
    • 3
  1. 1.Department of OphthalmologyAntalya Education and Research HospitalAntalyaTurkey
  2. 2.Department of OphthalmologyKepez State HospitalAntalyaTurkey
  3. 3.Department of OphthalmologyAkdeniz University Medical FacultyAntalyaTurkey

Personalised recommendations