Advertisement

International Ophthalmology

, Volume 39, Issue 2, pp 335–340 | Cite as

Comparison of anterior segment parameters and axial lengths of myopic, emmetropic, and hyperopic children

  • Mehmethan DoganEmail author
  • Ufuk Elgin
  • Emine Sen
  • Kemal Tekin
  • Pelin Yilmazbas
Original Paper

Abstract

Purpose

To compare the anterior segment parameters of myopic, hyperopic, and emmetropic children by using optical biometry.

Methods

This prospective cross-sectional study included 150 eyes of 150 children between 6 and 16 years old. The eyes were divided into three groups according to their spherical equivalent (SE) refractive error values as myopic [between − 1.0 and − 6.0 diopter (D)], emmetropic (between + 0.50 and − 0.50 D), and hyperopic (between + 1. 0 and + 3.0 D). Axial length (AL), central corneal thickness, anterior chamber depth (ACD), lens thickness (LT), and mean keratometry (K mean) measurements were obtained by an optical biometry (LenStar LS 900, Haag Streit Diagnostics) were compared between the groups.

Results

There were no statistically significant differences regarding the ages and genders of the participants between the groups (p > 0.05). The mean SE refractive error values were − 2.20 ± 0.71 D in myopic, − 0.08 ± 0.49 D in emmetropic, and + 2.06 ± 0.53 D in hyperopic eyes. The mean AL values were 24.50 ± 0.69, 23.41 ± 0.61, and 22.33 ± 0.61 mm, respectively, in myopic, emmetropic, and hyperopic eyes (p < 0.001). The mean ACD values were 3.94 ± 0.22, 3.78 ± 0.23, and 3.45 ± 0.20 mm, respectively, in myopic, emmetropic, and hyperopic eyes (p < 0.001). The mean LT values were 3.56 ± 0.20, 3.43 ± 0.17, and 3.31 ± 0.12 mm, respectively, in myopic, emmetropic, and hyperopic eyes (p < 0.001). There were no significant differences in the other parameters between the groups.

Conclusions

Refractive errors are the main factors those affect anterior segment parameters and AL in children and the most severely affected parameters were found to be the AL, ACD, and LT values.

Keywords

Anterior segment parameters Axial length Optical biometry 

Notes

Compliance with ethical standards

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

References

  1. 1.
    Multi-Ethnic Pediatric Eye Disease Study Group (2010) Prevalence of myopia and hyperopia in 6- to 72-month-old African American and Hispanic children: the Multi-Ethnic Pediatric Eye Disease Study. Ophthalmology 117:140–147CrossRefGoogle Scholar
  2. 2.
    Fozailoff A, Tarczy-Hornoch K, Cotter S, Wen G, Lin J, Borchert M, Azen S, Varma R, Writing Committee for the MEPEDS Study Group (2011) Prevalence of astigmatism in 6- to 72-month-old African American and Hispanic children: the Multi-Ethnic Pediatric Eye Disease Study. Ophthalmology 118:284–293CrossRefGoogle Scholar
  3. 3.
    Wen G, Tarczy-Hornoch K, McKean-Cowdin R, Cotter SA, Borchert M, Lin J, Kim J, Varma R, Multi-Ethnic Pediatric Eye Disease Study Group (2013) Prevalence of myopia, hyperopia, and astigmatism in non-Hispanic white and Asian children: multi-ethnic pediatric eye disease study. Ophthalmology 12:2109–2116CrossRefGoogle Scholar
  4. 4.
    Giordano L, Friedman DS, Repka MX, Katz J, Ibironke J, Hawes P, Tielsch JM (2009) Prevalence of refractive error among preschool children in an urban population: the Baltimore Pediatric Eye Disease Study. Ophthalmology 116:739–746CrossRefGoogle Scholar
  5. 5.
    Caca I, Cingu AK, Sahin A, Ari S, Dursun ME, Dag U, Balsak S, Alakus F, Yavuz A, Palanci Y (2013) Amblyopia and refractive errors among school-aged children with low socioeconomic status in southeastern Turkey. J Pediatr Ophthalmol Strabismus 50:37–43CrossRefGoogle Scholar
  6. 6.
    Flitcroft DI (2014) Emmetropisation and the aetiology of refractive errors. Eye (Lond). 28:169–179CrossRefGoogle Scholar
  7. 7.
    Charman WN, Radhakrishnan H (2010) Peripheral refraction and the development of refractive error: a review. Ophthalmic Physiol Opt 30:321–338CrossRefGoogle Scholar
  8. 8.
    Schaeffel F, Glasser A, Howland HC (1988) Accommodation, refractive error and eye growth in chickens. Vis Res 28:639–657CrossRefGoogle Scholar
  9. 9.
    Smith EL 3rd, Hung LF (1999) The role of optical defocus in regulating refractive development in infant monkeys. Vis Res 39:1415–1435CrossRefGoogle Scholar
  10. 10.
    Smith EL 3rd, Hung LF, Arumugam B (2014) Visual regulation of refractive development: insight from animal studies. Eye (Lond). 28:180–188CrossRefGoogle Scholar
  11. 11.
    Saw SM, Katz J, Schein OD, Chew SJ, Chan TK (1996) Epidemiology of myopia. Epidemiol Rev 18:175–187CrossRefGoogle Scholar
  12. 12.
    Wong TY, Foster PJ, Hee J (2000) Prevalence and risk factors for refractive errors in adult Chinese in Singapore. Invest Ophthalmol Vis Sci 41:2486–2494Google Scholar
  13. 13.
    Seet B, Wong TY, Tan DT (2001) Myopia in Singapore: taking a public health approach. Br J Ophthalmol 85:521–526CrossRefGoogle Scholar
  14. 14.
    He X, Zou H, Lu L, Zhao H, Li Q, Zhu J (2015) Axial length/corneal radius ratio: association with refractive state and role on myopia detection combined with visual acuity in Chinese school children. PLoS ONE 10:e0111766CrossRefGoogle Scholar
  15. 15.
    Mutti DO, Hayes JR, Mitchell GL, Jones LA, Moeschberger ML, Cotter SA, Kleinstein RN, Manny RE, Twelker JD, Zadnik K, CLEERE Study Group (2007) Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol Vis Sci 48:2510–2519CrossRefGoogle Scholar
  16. 16.
    Meng W, Butterworth J, Malecaze F, Calvas P (2011) Axial length of myopia: a review of current research. Ophthalmologica 225:127–134CrossRefGoogle Scholar
  17. 17.
    Rabsilber TM, Jepsen C, Auffarth GU, Holzer MP (2010) Intraocular lens power calculation: clinical comparison of 2 optical biometry devices. J Cataract Refract Surg 36:230–234CrossRefGoogle Scholar
  18. 18.
    Holzer MP, Mamusa M, Auffarth GU (2009) Accuracy of a new partial coherence interferometry analyser for biometric measurements. Br J Ophthalmol 93(6):807–810CrossRefGoogle Scholar
  19. 19.
    Hui S, Yi L (2014) Comparison of two optical biometers in intraocular lens power calculation. Indian J Ophthalmol 62:931–934CrossRefGoogle Scholar
  20. 20.
    Hashemi H, Khabazkhoob M, Emamian MH, Shariati M, Miraftab M, Yekta A, Ostadimoghaddam H, Fotouhi A (2015) Association between refractive errors and ocular biometry in Iranian adults. J Ophthalmic Vis Res 10:214–220CrossRefGoogle Scholar
  21. 21.
    He J, Lu L, He X, Xu X, Du X, Zhang B, Zhao H, Sha J, Zhu J, Zou H, Xu X (2017) The relationship between crystalline lens power and refractive error in older Chinese adults: the Shanghai Eye Study. PLoS ONE 12:e0170030CrossRefGoogle Scholar
  22. 22.
    Kim JH, Kim M, Lee SJ, Han SB, Kong YT, Yang HK, Hyon JY (2016) Age-related differences in ocular biometry in adult Korean population. BMC Ophthalmol 16:146CrossRefGoogle Scholar
  23. 23.
    Touzeau O, Allouch C, Borderie V, Kopito R, Laroche L (2003) Correlation between refraction and ocular biometry. J Fr Ophtalmol 26:355–363Google Scholar
  24. 24.
    Wong HB, Machin D, Tan SB, Wong TY, Saw SM (2010) Ocular component growth curves among Singaporean children with different refractive error status. Invest Ophthalmol Vis Sci 51:1341–1347CrossRefGoogle Scholar
  25. 25.
    O’Donnell C, Hartwig A, Radhakrishnan H (2011) Correlations between refractive error and biometric parameters in human eyes using the LenStar 900. Contact Lens Anterior Eye 34:26–31CrossRefGoogle Scholar
  26. 26.
    Şahin A, Gürsoy H, Başmak H, Yildirim N, Usalp Z, Çolak E (2011) Reproducibility of ocular biometry with a new noncontact optical low-coherence reflectometer in children. Eur J Ophthalmol 21:194–198CrossRefGoogle Scholar
  27. 27.
    Holladay JT (1997) Standardizing constants for ultrasonic biometry, keratometry, and intraocular lens power calculations. J Cataract Refract Surg 23:1356–1370CrossRefGoogle Scholar
  28. 28.
    Hussin HM, Spry PG, Majid MA, Gouws P (2006) Reliability and validity of the partial coherence interferometry for measurement of ocular axial length in children. Eye (Lond) 20:1021–1024CrossRefGoogle Scholar
  29. 29.
    Gul A, Caglar C, Cınal A, Yasar T, Kılıc A (2014) Ocular biometry and central corneal thickness in children: a hospital-based study. Arq Bras Oftalmol 77:152–154CrossRefGoogle Scholar
  30. 30.
    Bhardwaj V, Rajeshbhai GP (2013) Axial length, anterior chamber depth—a study in different age groups and refractive errors. J Clin Diagn Res 7:2211–2212Google Scholar
  31. 31.
    Tomomatsu T, Kono S, Arimura S, Tomomatsu Y, Matsumura T, Takihara Y, Inatani M, Takamura Y (2013) Relationship between lenticular power and refractive error in children with hyperopia. Clin Ophthalmol 7:601–606Google Scholar
  32. 32.
    Lee JW, Yau GS, Woo TT, Yick DW, Tam VT, Yuen CY (2014) The anterior chamber depth and retinal nerve fiber layer thickness in children. Sci World J 2014:538283Google Scholar
  33. 33.
    Cheung SW, Chan R, Cheng RC, Cho P (2009) Effect of cycloplegia on axial length and anterior chamber depth measurements in children. Clin Exp Optom 92:476–481CrossRefGoogle Scholar
  34. 34.
    Shih YF, Chen TC, Chiang TH, Lin LLK, Hung PT (2011) Changes of anterior segment during childhood: a biometric study. J Med Ultrasound 19:33–40CrossRefGoogle Scholar
  35. 35.
    Chen MJ, Liu YT, Tsai CC, Chen YC, Chou CK, Lee SM (2009) Relationship between central corneal thickness, refractive error, corneal curvature, anterior chamber depth and axial length. J Chin Med Assoc 72:133–137CrossRefGoogle Scholar
  36. 36.
    Linke SJ, Steinberg J, Eddy MT, Richard G, Katz T (2011) Relationship between minimum corneal thickness and refractive state, keratometry, age, sex, and left or right eye in refractive surgery candidates. J Cataract Refract Surg 37:2175–2180CrossRefGoogle Scholar
  37. 37.
    Zhang YY, Jiang WJ, Teng ZE, Wu JF, Hu YY, Lu TL, Wu H, Sun W, Wang XR, Bi HS, Jonas JB (2015) Corneal curvature radius and associated factors in Chinese children: the Shandong Children Eye Study. PLoS ONE 10:0117481Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Mehmethan Dogan
    • 1
    Email author
  • Ufuk Elgin
    • 2
  • Emine Sen
    • 1
  • Kemal Tekin
    • 3
  • Pelin Yilmazbas
    • 2
  1. 1.Ulucanlar Eye Training and Research HospitalAnkaraTurkey
  2. 2.Ulucanlar Eye Research HospitalAnkaraTurkey
  3. 3.Kars State HospitalKarsTurkey

Personalised recommendations