Advertisement

International Ophthalmology

, Volume 38, Issue 5, pp 1907–1913 | Cite as

Comparison of cumulative dissipated energy delivered by active-fluidic pressure control phacoemulsification system versus gravity-fluidics

  • Roberto Gonzalez-Salinas
  • Manuel Garza-Leon
  • Manuel Saenz-de-Viteri
  • Juan C. Solis-S
  • Rosario Gulias-Cañizo
  • Hugo Quiroz-Mercado
Original Paper

Abstract

Purpose

To compare the cumulative dissipated energy (CDE), aspiration time and estimated aspiration fluid utilized during phacoemulsification cataract surgery using two phacoemulsification systems .

Methods

A total of 164 consecutive eyes of 164 patients undergoing cataract surgery, 82 in the active-fluidics group and 82 in the gravity-fluidics group were enrolled in this study. Cataracts graded NII to NIII using LOCS II were included. Each subject was randomly assigned to one of the two platforms with a specific configuration: the active-fluidics Centurion ® phacoemulsification system or the gravity-fluidics Infiniti ® Vision System. CDE, aspiration time (AT) and the mean estimated aspiration fluid (EAF) were registered and compared.

Results

A mean age of 68.3 ± 9.8 years was found (range 57–92 years), and no significant difference was evident between both groups. A positive correlation between the CDE values obtained by both platforms was verified (r = 0.271, R 2 = 0.073, P = 0.013). Similarly, a significant correlation was evidenced for the EAF (r = 0.334, R 2 = 0.112, P = 0.046) and AT values (r = 0.156, R 2 = 0.024, P = 0.161). A statistically significantly lower CDE count, aspiration time and estimated fluid were obtained using the active-fluidics configuration when compared to the gravity-fluidics configuration by 19.29, 12.10 and 9.29%, respectively (P = 0.001, P < 0.0001 and P = 0.001).

Conclusions

The active-fluidics Centurion ® phacoemulsification system achieved higher surgical efficiency than the gravity-fluidics Infiniti ® IP system for NII and NIII cataracts.

Keywords

Cataract surgery Phacoemulsification Cumulative dissipated energy Active-fluidics Gravity-fluidics 

Notes

Acknowledgements

We would like to thank all patients that contributed their time and thus allowed us to obtain the data for this publication. Also, our deepest appreciation to the Luis Sánchez Bulnes Hospital at the Asociación para Evitar la Ceguera en México I.A.P. No grant or funding was received for the realization of this work.

Compliance with ethical standards

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Hodge W, Horsley T, Albiani D et al (2007) The consequences of waiting for cataract surgery: a systematic review. CMAJ 176:1285–1290. doi: 10.1503/cmaj.060962 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Christakis PG, Braga-Mele RM (2012) Intraoperative performance and postoperative outcome comparison of longitudinal, torsional, and transversal phacoemulsification machines. J Cataract Refract Surg 38:234–241. doi: 10.1016/j.jcrs.2011.08.035 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lündstrom M, Barry P, Henry Y, Rosen P, Stenevi U (2012) Evidence-based guidelines for cataract surgery: guidelines based on data in the European Registry of Quality Outcomes for Cataract and Refractive Surgery database. J Cataract Refract Surg 38:1086–1093. doi: 10.1016/j.jcrs.2012.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Packer M, Fishkind WJ, Fine IH, Seibel BS, Hoffman RS (2005) The physics of phaco: a review. J Cataract Refract Surg 31:424–431. doi: 10.1016/j.jcrs.2004.11.027 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rekas M, Montés-Micó R, Krix-Jachym K, Kluś A, Stankiewicz A, Ferrer-Blasco T (2009) Comparison of torsional and longitudinal modes using phacoemulsification parameters. J Cataract Refract Surg 35:1719–1724. doi: 10.1016/j.jcrs.2009.04.047 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu Y, Zeng M, Liu X, Luo L, Yuan Z, Xia Y, Zeng Y (2007) Torsional mode versus conventional ultrasound mode phacoemulsification; randomized comparative clinical study. J Cataract Refract Surg 33:287–292. doi: 10.1016/j.jcrs.2006.10.044 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nixon DR (2010) Preoperative cataract grading by Scheimpflug imaging and effect on operative fluidics and phacoemulsification energy. J Cataract Refract Surg 36:242–246. doi: 10.1016/j.jcrs.2009.08.032 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Davison JA (2008) Cumulative tip travel and implied followability of longitudinal and torsional phacoemulsification. J Cataract Refract Surg 34:986–990. doi: 10.1016/j.jcrs.2008.02.029 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chylack LT, Leske MC, McCarthy D, Khu P, Kashiwagi T, Sperduto R (1989) Lens opacities classification system II (LOCS II). Arch Ophthalmol 107:991–997CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Chen M, Anderson E, Hill G, Chen J, Patrianakos T (2015) Comparison of cumulative dissipated energy between the Infiniti and Centurion phacoemulsification systems. Clin Ophthalmol 9:1367. doi: 10.2147/OPTH.S88225 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Solomon KD, Lorente R, Fanney D, Cionni RJ (2016) Clinical study using a new phacoemulsification system with surgical intraocular pressure control. J Cataract Refract Surg 42:542–549. doi: 10.1016/j.jcrs.2016.01.037 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dick HB, Schultz T (2017) A Review of Laser-Assisted Versus Traditional Phacoemulsification Cataract Surgery. Ophthalmol Ther 10:1–2. doi: 10.1007/s40123-017-0080-z CrossRefGoogle Scholar
  13. 13.
    Walkow T, Anders N, Klebe S (2000) Endothelial cell loss after phacoemulsification: relation to preoperative and intraoperative parameters. J Cataract Refract Surg 26:727–732CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Mencucci R, Ponchietti C, Virgil G, Giansanti F, Menchini U (2006) Corneal endothelial damage after cataract surgery: microincision versus standard technique. J Cataract Refract Surg 32:1351–1354. doi: 10.1016/j.jcrs.2006.02.070 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sethi HS, Saluja K, Naik MP (2017) Comparative analysis of coaxial phacoemulsification with 2.2 and 2.8 mm clear corneal incisions. Int Ophthalmol 31:1–8. doi: 10.1007/s10792-017-0450-5 CrossRefGoogle Scholar
  16. 16.
    Ascaso FJ, Huerva V, Grzybowski A (2015) Epidemiology, etiology, and prevention of late IOL-capsular bag complex dislocation: review of the literature. J Ophthalmol 2015:805706. doi: 10.1155/2015/805706 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Han YK, Miller KM (2009) Heat production: longitudinal versus torsional phacoemulsification. J Cataract Refract Surg 35:1799–1805. doi: 10.1016/j.jcrs.2009.04.046 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dewey S, Beiko G, Braga-Mele R, Nixon DR, Raviv T, Rosenthal K, Cataract Clinical Committee ASCRS (2014) Microincisions in cataract surgery. J Cataract Refract Surg 40:1549–1557. doi: 10.1016/j.jcrs.2014.07.006 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sharif-Kashani P, Fanney D, Injev V (2014) Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems. BMC Ophthalmol 14:96. doi: 10.1186/1471-2415-14-96 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Research DepartmentHospital Luis Sánchez Bulnes, Asociación para Evitar la Ceguera en México I.A.P.Mexico CityMexico
  2. 2.Dirección de Ciencias Médicas de la División de Ciencias de la SaludUniversidad de MonterreyMonterreyMexico
  3. 3.Department of OphthalmologyUniversidad de NavarraPamplonaSpain
  4. 4.Biomedical Research DepartmentUniversidad Autónoma de QuerétaroQuerétaroMexico
  5. 5.Centro de Investigación y Estudios AvanzadosI.P.N. (CINVESTAV)Mexico CityMexico
  6. 6.University of ColoradoDenverUSA

Personalised recommendations