Clindamycin inhibits nociceptive response by reducing tumor necrosis factor-α and CXCL-1 production and activating opioidergic mechanisms

  • Felipe F. Rodrigues
  • Marcela I. Morais
  • Ivo S. F. Melo
  • Paulo S. A. Augusto
  • Marcela M. G. B. Dutra
  • Sarah O. A. M. Costa
  • Fábio C. Costa
  • Franciele A. Goulart
  • Alysson V. Braga
  • Márcio M. Coelho
  • Renes R. MachadoEmail author
Original Article


Clindamycin, a bacteriostatic semisynthetic lincosamide, is useful in the management of infections caused by aerobic and anaerobic Gram-positive cocci, including bacteremic pneumonia, streptococcal toxic shock syndrome and sepsis. It has been recently demonstrated that clindamycin inhibits in vitro and in vivo inflammatory cytokine production. In the present study, we investigated the effects of clindamycin in acute and chronic models of pain and inflammation in mice and the underlying mechanisms. Intraperitoneal (i.p.) administration of clindamycin (400 mg/kg) increased the animal’s latency to exhibit the nociceptive behavior induced by noxious heat (hot plate model). Intrathecal injection of clindamycin (2, 10 and 50 µg) also increased the animals’ latency to exhibit the nociceptive behavior. Tactile hypersensitivity and paw edema induced by intraplantar ( injection of carrageenan were attenuated by previous administration of clindamycin (200 and 400 mg/kg, i.p.). Clindamycin (100, 200 and 400 mg/kg, i.p.) also attenuated ongoing tactile hypersensitivity and paw edema induced by injection of complete Freund’s adjuvant (CFA). The antinociceptive activity of clindamycin (400 mg/kg, i.p.) in the hot plate model was attenuated by previous administration of naltrexone (5 and 10 mg/kg, i.p.), but not glibenclamide or AM251. CFA-induced production of TNF-α and CXCL-1 was reduced by clindamycin (400 mg/kg, i.p.). Concluding, clindamycin exhibits activities in acute and chronic models of pain and inflammation. These effects are associated with reduced production of TNF-α and CXCL-1 and activation of opioidergic mechanisms. Altogether, these results indicate that the clindamycin’s immunomodulatory effects may contribute to a pharmacological potential beyond its antibiotic property.


Clindamycin Pain Inflammation Tumor necrosis factor-α CXCL-1 Opioids 



We thank Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG; APQ-03120-16 and APQ-03027-18), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; 303307/2018-8), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Finance Code 001) and Pró-Reitoria de Pesquisa/UFMG for financial support.

Author contributions

FFR contributed to the research design, performance of the experiment and data analysis. MIM, ISFM, PSAA, MMGBD, SOAMC, FCC, FAG and AVB contributed to the performance of the experiment and data analysis. The study was conceived and supervised by MMC and RRM. All authors edited, read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Al Ahdal O, Bevan DR (1995) Clindamycin-induced neuromuscular blockade. Can J Anesth 42:614–617. CrossRefPubMedGoogle Scholar
  2. Alves D, Duarte I (2002) Involvement of ATP-sensitive K(+) channels in the peripheral antinociceptive effect induced by dipyrone. Eur J Pharmacol 444:47–52. CrossRefPubMedGoogle Scholar
  3. Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol 54:87–143. CrossRefPubMedGoogle Scholar
  4. Bastos LF, Coelho MM (2014) Drug repositioning: playing dirty to kill pain. CNS Drugs 28:45–61. CrossRefPubMedGoogle Scholar
  5. Bastos LF, Angusti A, Vilaça MC, Merlo LA, Nascimento EB Jr, Rocha LT, Godin AM, Solano AG, Jarussophon S, Nunan EA, Konishi Y, Coelho MM (2008) A novel non-antibacterial, non-chelating hydroxypyrazoline derivative of minocycline inhibits nociception and oedema in mice. Br J Pharmacol 155:714–721. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bastos LF, de Oliveira AC, Watkins LR, Moraes MF, Coelho MM (2012) Tetracyclines and pain. Naunyn Schmiedebergs Arch Pharmacol 385:225–241. CrossRefPubMedGoogle Scholar
  7. Billiau A, Matthys P (2001) Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases. J Leukoc Biol 70:849–860. CrossRefPubMedGoogle Scholar
  8. Billiau A, Matthys P (2011) Collagen-induced arthritis and related animal models: how much of their pathogenesis is autoimmune, how much is auto-inflammatory? Cytokine Growth Factor Rev 22:339–344. CrossRefPubMedGoogle Scholar
  9. Brack A, Rittner HL, Machelska H, Leder K, Mousa SA, Schäfer M, Stein C (2004) Control of inflammatory pain by chemokine-mediated recruitment of opioid-containing polymorphonuclear cells. Pain 112:229–238. CrossRefPubMedGoogle Scholar
  10. Brito AMS, Godin AM, Augusto PSA, Menezes RR, Melo ISF, Dutra MGMB, Costa SOAM, Goulart FA, Rodrigues FF, Morais IM, Machado RR, Coelho MM (2018) Antiallodynic activity of leflunomide is partially inhibited by naltrexone and glibenclamide and associated with reduced production of TNF-α and CXCL-1. Eur J Pharmacol 818:17–25. CrossRefPubMedGoogle Scholar
  11. Cao DL, Zhang ZJ, Xie RG, Jiang BC, Ji RR, Gao YJ (2014) Chemokine CXCL1 enhances inflammatory pain and increases NMDA receptor activity and COX-2 expression in spinal cord neurons via activation of CXCR2. Exp Neurol 261:328–336. CrossRefPubMedGoogle Scholar
  12. Carollo M, Hogaboam CM, Kunkel SL, Delaney S, Christie MI, Perretti M (2001) Analysis of the temporal expression of chemokines and chemokine receptors during experimental granulomatous inflammation: role and expression of MIP-1alpha and MCP-1. Br J Pharmacol 134:1166–1179. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824. CrossRefPubMedGoogle Scholar
  14. Chen YL, Le Vraux V, Giroud JP, Chauvelot-Moachon L (1994) Anti-tumor necrosis factor properties of non-peptide drugs in acute-phase responses. Eur J Pharmacol 271:319–327. CrossRefPubMedGoogle Scholar
  15. Chen J, Song Y, Yang J, Zhang Y, Zhao P, Zhu XJ, Su HC (2013) The contribution of TNF-α in the amygdala to anxiety in mice with persistent inflammatory pain. Neurosci Lett 541:275–280. CrossRefPubMedGoogle Scholar
  16. Chiu IM, Heesters BA, Ghasemlou N, Von Hehn CA, Zhao F, Tran J, Wainger B, Strominger A, Muralidharan S, Horswill AR, Bubeck Wardenburg J, Hwang SW, Carroll MC, Woolf CJ (2013) Bacteria activate neurons that modulate pain and inflammation. Nature 501:52–57. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Crabtree BL (1984) Review of naltrexone, a long-acting opiate antagonist. Clin Pharm 3:273–280PubMedGoogle Scholar
  18. Cunha JM, Cunha FQ, Poole S, Ferreira SH (2000) Cytokine-mediated inflammatory hyperalgesia limited by interleukin-1 receptor antagonist. Br J Pharmacol 130:1418–1424. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Di Rosa M (1972) Biological properties of carrageenan. J Pharm Pharmacol 24:89–102. CrossRefPubMedGoogle Scholar
  20. Duman EN, Kesim M, Kadioglu M, Yaris E, Kalyoncu NI, Erciyes N (2004) Possible involvement of opioidergic and serotonergic mechanisms in antinociceptive effect of paroxetine in acute pain. J Pharmacol Sci 94:161–165. CrossRefPubMedGoogle Scholar
  21. Dutra MM, Nascimento Júnior EB, Godin AM, Brito AM, Melo IS, Augusto PS, Rodrigues FF, Araújo DP, de Fátima Â, Coelho MM, Machado RR (2015) Opioid pathways activation mediates the activity of nicorandil in experimental models of nociceptive and inflammatory pain. Eur J Pharmacol 768:160–164. CrossRefPubMedGoogle Scholar
  22. Farmer MA, Taylor AM, Bailey AL, Tuttle AH, MacIntyre LC, Milagrosa ZE, Crissman HP, Bennett GJ, Ribeiro-da-Silva A, Binik YM, Mogil JS (2011) Repeated vulvoginal fungal infections cause persistent pain in a mouse model of vulvodynia. Sci Transl Med 3:101ra91. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Federici TJ (2011) The non-antibiotic properties of tetracyclines: clinical potential in ophthalmic disease. Pharmacol Res 64:614–623. CrossRefPubMedGoogle Scholar
  24. Fehrenbacher JC, Vaski MR, Duarte DB (2012) Models of inflammation: carrageenan- or complete Freund's adjuvant (CFA)-induced edema and hypersensitivity in the rat. Curr Protoc Pharmacol 5:01–11. CrossRefGoogle Scholar
  25. Gaskill B, Rohr SA, Pajor EA, Lucas JR, Garner JP (2009) Some like it hot: mouse temperature preferences in laboratory housing. Appl Animal Behav Sci 116:279–285. CrossRefGoogle Scholar
  26. Gatti G, Flaherty J, Bubp J, White J, Borin M, Gambertoglio J (1993) Comparative study of bioavailabilities and pharmacokinetics of clindamycin in healthy volunteers and patients with AIDS. Antimicrob Agents Chemother 37:1137–1143. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Godin AM, Araújo DP, Menezes RR, Brito AM, Melo IS, Coura GM, Soares DG, Bastos LF, Amaral FA, Ribeiro LS, Boff D, Santos JR, Santos DA, Teixeira MM, de Fátima Â, Machado RR, Coelho MM (2014) Activities of 2-phthalimidethanol and 2-phthalimidethyl nitrate, phthalimide analogs devoid of the glutarimide moiety, in experimental models of inflammatory pain and edema. Pharmacol Biochem Behav 122:291–298. CrossRefPubMedGoogle Scholar
  28. Gordon CJ (1990) Thermal biology of the laboratory rat. Physiol Behav 47:963–991. CrossRefPubMedGoogle Scholar
  29. Guhring H, Hamza M, Sergejeva M, Ates M, Kotalla CE, Ledent C, Brune K (2002) A role for endocannabinoids in indomethacin-induced spinal antinociception. Eur J Pharmacol 454:153–163. CrossRefPubMedGoogle Scholar
  30. Guindon J, De Léan A, Beaulieu P (2006) Local interactions between anandamide, an endocannabinoid, and ibuprofen, a nonsteroidal anti-inflammatory drug, in acute and inflammatory pain. Pain 121:85–93. CrossRefPubMedGoogle Scholar
  31. Handy RL, Moore PK (1998) A comparison of the effects of L-NAME, 7-NI and L-NIL on carrageenan-induced hindpaw oedema and NOS activity. Br J Pharmacol 123:1119–1126. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hirata N, Hiramatsu K, Kishi K, Yamasaki T, Ichimiya T, Nasu M (2001) Pretreatment of mice with clindamycin improves survival of endotoxic shock by modulating the release of inflammatory cytokines. Antimicrob Agents Chemother 45:2638–2642. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hu Y, Li W, Lu L, Cai J, Xian X, Zhang M, Li Q, Li L (2010) An antinociceptive role for ceftriaxone in chronic neuropathic pain in rats. Pain 148:284–301. CrossRefPubMedGoogle Scholar
  34. Hylden JL, Wilcox GL (1980) Intrathecal morphine in mice: a new technique. Eur J Pharmacol 67:313–316. CrossRefPubMedGoogle Scholar
  35. Kim BN, Kim ES, Oh MD (2014) Oral antibiotic treatment of staphylococcal bone and joint infections in adults. J Antimicrob Chemother 69:309–322. CrossRefPubMedGoogle Scholar
  36. Klempner MS, Styrt B (1983) Alkalinization of the intralysosomal pH by clindamycin and its effects on neutrophil function. J Antimicrob Chemother 12:39–50. CrossRefPubMedGoogle Scholar
  37. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175. CrossRefPubMedGoogle Scholar
  38. Konopka LM, Parsons RL (1988) Clindamycin induced alteration of ganglionic function. I. Direct effects on ganglion cell properties. Brain Res 458:269–277. CrossRefPubMedGoogle Scholar
  39. Labro MT (2002) Antibiotics as anti-inflammatory agents. Curr Opin Investig Drugs 3:61–68. CrossRefPubMedGoogle Scholar
  40. Li Y, Zhou Q, Liu Y, Chen W, Li J, Yuan Z, Yong B, Xu H (2016) Delayed treatment of septic arthritis in the neonate: a review of 52 cases. Medicine (Baltimore) 95:e5682. CrossRefGoogle Scholar
  41. Loh HH, Tseng LF, Wei E, Li CH (1976) Beta-endorphin is a potent analgesic agent. Proc Natl Acad Sci USA 73:2895–2898. CrossRefPubMedGoogle Scholar
  42. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532. CrossRefPubMedGoogle Scholar
  43. MacDougal C, Chambers HF (2011) Protein synthesis inhibitors and miscellaneous antibacterial agents. Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 12th edn. McGraw-Hill, New York, pp 1521–1547Google Scholar
  44. Maruyama K, Takayama Y, Sugisawa E, Yamanoi Y, Yokawa T, Kondo T, Ishibashi KI, Sahoo BR, Takemura N, Mori Y, Kanemaru H, Kumagai Y, Martino MM, Yoshioka Y, Nishijo H, Tanaka H, Sasaki A, Ohno N, Iwakura Y, Moriyama Y, Nomura M, Akira S, Tominaga M (2018) The ATP transporter VNUT mediates induction of dectin-1 triggered Candida nociception. iScience 6:306–318. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mazzon E, Esposito E, Di Paola R, Muià C, Crisafulli C, Genovese T, Caminiti R, Meli R, Bramanti P, Cuzzocrea S (2008) Effect of tumour necrosis factor-alpha receptor 1 genetic deletion on carrageenan-induced acute inflammation: a comparison with etanercept. Clin Exp Immunol 153:136–149. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435. CrossRefPubMedGoogle Scholar
  47. Mesdjian E, DeFeudis FV, Valli M, Jadot G, Mandel P (1983) Antinociceptive action of sodium valproate in the mouse. Gen Pharmacol 14:697–699. CrossRefPubMedGoogle Scholar
  48. Morais MI, Rodrigues FF, Costa SOAM, Goulart FA, Costa FC, Melo ISF, Augusto PSA, Dutra MMGB, de Fátima Â, Coelho MM, Machado RR (2018) Nicorandil inhibits tactile hypersensitivity induced by paclitaxel by activating opioidergic and serotonergic mechanisms. Eur J Pharmacol 824:108–114. CrossRefPubMedGoogle Scholar
  49. Murillo O, Grau I, Lora-Tamayo J, Gomez-Junyent J, Ribera A, Tubau F, Ariza J, Pallares R (2015) The changing epidemiology of bacteraemic osteoarticular infections in the early 21st century. Clin Microbiol Infect 21:254.e1–8. CrossRefGoogle Scholar
  50. Nakamura A, Fujita M, Shiomi H (1996) Involvement of endogenous nitric oxide in the mechanism of bradykinin-induced peripheral hyperalgesia. Br J Pharmacol 117:407–412. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nakano T, Hiramatsu K, Kishi K, Hirato N, Kadota J, Nasu M (2003) Clindamycin modulates inflammatory-cytokine induction in lipopolysaccharide-stimulated mouse peritoneal macrophages. Antimicrob Agents Chemother 47:363–367. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID (2007) Minocycline down-regulates MHC II expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC) alpha/beta II. J Biol Chem 282:15208–15216. CrossRefPubMedGoogle Scholar
  53. Oaklander AL (2008) Mechanisms of pain and itch caused by herpes zoster (shingles). J Pain 1(Suppl 1):S10–S18. CrossRefGoogle Scholar
  54. Olarte L, Romero J, Barson W, Bradley J, Lin PL, Givner L, Tan T, Hoffman J, Hultén KG, Mason EO, Kaplan SL (2017) Osteoarticular infections caused by Streptococcus pneumoniae in children in the post-pneumococcal conjugate vaccine era. Pediatr Infect Dis J 36:1201–1204. CrossRefPubMedGoogle Scholar
  55. Peltola H, Pääkkönen M, Kallio P, Kallio MJ; OM-SA Study Group (2012) Clindamycin vs. first-generation cephalosporins for acute osteoarticular infections of childhood—a prospective quasi-randomized controlled trial. Clin Microbiol Infect 18:582–589. CrossRefGoogle Scholar
  56. Peltola H, Vahvanen VA (1984) Comparative study of osteomyelitis and purulent arthritis with special reference to aetiology and recovery. Infection 12:75–79. CrossRefPubMedGoogle Scholar
  57. Pertwee RG (2006) The pharmacology of cannabinoid receptors and their ligands: an overview. Int J Obes (Lond) 1:S13–S18. CrossRefGoogle Scholar
  58. Prior C, Fiekers JF, Henderson F, Dempster J, Marshall IG, Parsons RL (1990) End-plate ion channel block produced by lincosamide antibiotics and their chemical analogs. J Pharmacol Exp Ther 255:1170–1176PubMedGoogle Scholar
  59. Ramos KM, Lewis MT, Morgan KN, Crysdale NY, Kroll JL, Taylor FR, Harrison JA, Sloane EM, Maier SF, Watkins LR (2010) Spinal upregulation of glutamate transporter GLT-1 by ceftriaxone: therapeutic efficacy in a range of experimental nervous system disorders. Neuroscience 169:1888–1900. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ren K, Dubner R (2010) Interactions between the immune and nervous systems in pain. Nat Med 16:1267–1276. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ritzman AM, Hughes-Hanks JM, Blaho VA, Wax LE, Mitchell WJ, Brown CR (2010) The chemokine receptor CXCR2 ligand KC (CXCL1) mediates neutrophil recruitment and is critical for development of experimental Lyme arthritis and carditis. Infect Immun 78:4593–4600. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rodrigues AR, Duarte ID (2000) The peripheral antinociceptive effect induced by morphine is associated with ATP-sensitive K(+) channels. Br J Pharmacol 129:110–114. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rodrigues AR, Castro MS, Francischi JN, Perez AC, Duarte ID (2005) Participation of ATP-sensitive K+ channels in the peripheral antinociceptive effect of fentanyl in rats. Braz J Med Biol Res 38:91–97. CrossRefPubMedGoogle Scholar
  64. Romero TR, Pacheco DF, Duarte ID (2013) Xylazine induced central antinociception mediated by endogenous opioids and μ-opioid receptor, but not δ- or κ-opioid receptors. Brain Res 1506:58–63. CrossRefPubMedGoogle Scholar
  65. Rosland JH, Hunskaar S, Hole K (1988) Modification of the antinociceptive effect of morphine by acute and chronic administration of clomipramine in mice. Pain 33:349–355. CrossRefPubMedGoogle Scholar
  66. Rubin BK, Tamaoki J (2000) Macrolide antibiotics as biological response modifiers. Curr Op Investig Drugs 1:169–172. CrossRefGoogle Scholar
  67. Russell CD, Ramaesh R, Kalima P, Murray A, Gaston MS (2015) Microbiological characteristics of acute osteoarticular infections in children. J Med Microbiol 64:446–453. CrossRefPubMedGoogle Scholar
  68. Sabsovich I, Guo TZ, Wei T, Zhao R, Li X, Clark DJ, Geis C, Sommer C, Kingery WS (2008) TNF signaling contributes to the development of nociceptive sensitization in a tibia fracture model of complex regional pain syndrome type I. Pain 137:507–519. CrossRefPubMedGoogle Scholar
  69. Spížek J, Řezanka T (2017) Lincosamides: chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem Pharmacol 133:20–28. CrossRefPubMedGoogle Scholar
  70. Stein C, Millan MJ, Herz A (1998) Unilateral inflammation of the hindpaw in rats as a model of prolonged noxious stimulation: alterations in behavior and nociceptive thresholds. Pharmacol Biochem Behav 31:445–451. CrossRefGoogle Scholar
  71. Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, Hirschmann JV, Kaplan SL, Montoya JG, Wade JC (2014) Infectious Diseases Society of America, Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis 59:e10–52. CrossRefPubMedGoogle Scholar
  72. Tonussi CR, Ferreira SH (1994) Mechanism of diclofenac analgesia: direct blockade of inflammatory sensitization. Eur J Pharmacol 251:173–179. CrossRefPubMedGoogle Scholar
  73. Vandewauw I, De Clercq K, Mulier M, Held K, Pinto S, Van Ranst N, Segal A, Voet T, Vennekens R, Zimmermann K, Vriens J, Voets T (2018) A TRP channel trio mediates acute noxious heat sensing. Nature 555:662–666. CrossRefPubMedGoogle Scholar
  74. Vinegar R, Truax JF, Selph JL, Johnston PR, Venable AL, McKenzie KK (1987) Pathway to carrageenan-induced inflammation in the hind limb of the rat. Fed Proc 46:118–126PubMedGoogle Scholar
  75. Wang X, Grace PM, Pham MN, Cheng K, Strand KA, Smith C, Li J, Watkins LR, Yin H (2013) Rifampin inhibits Toll-like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain. FASEB J 27:2713–2722. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Watkins LR, Maier SF (1999) Implications of immune-to-brain communication for sickness and pain. Proc Natl Acad Sci USA 96:7710–7713. CrossRefPubMedGoogle Scholar
  77. Yang SH, Lee MG (2007) Dose-independent pharmacokinetics of clindamycin after intravenous and oral administration to rats: contribution of gastric first-pass effect to low bioavailability. Int J Pharm 332:17–23. CrossRefPubMedGoogle Scholar
  78. Zhang L, Berta T, Xu ZZ, LiuT PJY, Ji RR (2011) TNF-α contributes to spinal cord synaptic plasticity and inflammatory pain: distinct role of TNF receptor subtypes 1 and 2. Pain 152:419–427. CrossRefPubMedGoogle Scholar
  79. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Felipe F. Rodrigues
    • 1
  • Marcela I. Morais
    • 1
  • Ivo S. F. Melo
    • 1
  • Paulo S. A. Augusto
    • 1
  • Marcela M. G. B. Dutra
    • 1
  • Sarah O. A. M. Costa
    • 1
  • Fábio C. Costa
    • 1
  • Franciele A. Goulart
    • 1
  • Alysson V. Braga
    • 1
  • Márcio M. Coelho
    • 1
  • Renes R. Machado
    • 1
    Email author
  1. 1.Departamento de Produtos Farmacêuticos, Faculdade de FarmáciaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations