Phytochemicals as potential IKK-β inhibitor for the treatment of cardiovascular diseases in plant preservation: terpenoids, alkaloids, and quinones

  • Fang Hua
  • Lingli Shi
  • Peng ZhouEmail author


Modulation of inhibitor kappa B kinase-beta (IKK-β) kinase activity could be useful for preventing inflammation that serves an efficient role in protection against cardiovascular diseases (CVDs). IKK-β induces inflammation by activating transcription factor NF-kappa B (NF-κB) through phosphorylation of IκB. Therefore, IKK-β is considered an interesting target for protecting and treating CVDs. The cardioprotective potential of terpenoids, alkaloids and quinines may be related to modulating inflammatory responses. In this study, the interactions between different classes of inhibitors and IKK-β were investigated, through the application of SystemsDock. Molecular docking results showed that Diosgenin and Ginsenoside Re were the top docking score compounds. Diosgenin and Ginsenoside Re are the most promising IKK-β inhibitors in terpenoids, alkaloids, and quinones. Diosgenin and Ginsenoside Re could be helpful to find the lead compounds on designing and developing novel cardioprotective agents.


Terpenoids Alkaloids Quinones Cardiovascular diseases Ikk-β inhibitor Molecular docking 



Financial assistance was received with appreciation from the Key Project Foundation of Natural Science Research in Universities of Anhui Province in China (Nos. KJ2017A303 and KJ2017A629), and Training Object for Key Teacher of Anhui Xinhua University (Nos. 2018xgg25 and 2018xgg26).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Aldieri E, Atragene D, Bergandi L, Riganti C, Costamagna C, Bosia A et al (2003) Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-κB activation. FEBS Lett 552:141–144CrossRefGoogle Scholar
  2. Babula P, Adam V, Havel L, Kizek R (2007) Naphthoquinones and their pharmacological properties. Ceska Slov Farm 56:114–120Google Scholar
  3. Chen X, Yang L, Oppenheim JJ, Howard MZ (2002) Cellular pharmacology studies of shikonin derivatives. Phytother Res 16:199–209CrossRefGoogle Scholar
  4. Chen Y, Tsai YH, Tseng SH (2011) The potential of tetrandrine as a protective agent for ischemic stroke. Molecules 16:8020–8032CrossRefGoogle Scholar
  5. Chen C, Liang Z, Chen Q, Li ZG (2012) Irbesartan and emodin on myocardial remodeling in Goldblatt hypertensive rats. J Cardiovasc Pharmacol 60:375–380CrossRefGoogle Scholar
  6. Chen C, Du P, Wang J (2015a) Paeoniflorin ameliorates acute myocardial infarction of rats by inhibiting inflammation and inducible nitric oxide synthase signaling pathways. Mol Med Rep 12:3937–3943CrossRefGoogle Scholar
  7. Chen CT, Wang ZH, Hsu CC, Lin HH, Chen JH (2015b) In vivo protective effects of diosgenin against doxorubicin-induced cardiotoxicity. Nutrients 7:4938–4954CrossRefGoogle Scholar
  8. Chen RC, Wang J, Yang L, Sun GB, Sun XB (2016) Protective effects of ginsenoside Re on lipopolysaccharide-induced cardiac dysfunction in mice. Food Funct 7:2278–2287CrossRefGoogle Scholar
  9. Chen HH, Zhao P, Zhao WX, Tian J, Guo W, Xu M et al (2017) Stachydrine ameliorates pressure overload-induced diastolic heart failure by suppressing myocardial fibrosis. Am J Transl Res 9:4250–4260Google Scholar
  10. Christopher JA, Avitabile BG, Bamborough P, Champigny AC, Cutler GJ, Dyos SL et al (2007) The discovery of 2-amino-3,5-diarylbenzamide inhibitors of IKK-alpha and IKK-beta kinases. Bioorg Med Chem Lett 17:3972–3977CrossRefGoogle Scholar
  11. Deng W, Fang Y, Liu Y, Zhou H, Cheng Z, Zhang Y et al (2014) Sanguinarine protects against pressure overload-induced cardiac remodeling via inhibition of nuclear factor-κB activation. Mol Med Rep 10:211–216CrossRefGoogle Scholar
  12. Dong XZ, Zhang M, Wang K, Liu P, Guo DH, Zheng XL et al (2013) Sanguinarine inhibits vascular endothelial growth factor release by generation of reactive oxygen species in MCF-7 human mammary adenocarcinoma cells. Biomed Res Int 2013:517698Google Scholar
  13. Du Y, Ko KM (2005) Effects of emodin treatment on mitochondrial ATP generation capacity and antioxidant components as well as susceptibility to ischemia-reperfusion injury in rat hearts: single versus multiple doses and gender difference. Life Sci 77:2770–2782CrossRefGoogle Scholar
  14. Fan D, Yang Z, Yuan Y, Wu QQ, Xu M, Jin YG et al (2017) Sesamin prevents apoptosis and inflammation after experimental myocardial infarction by JNK and NF-κB pathways. Food Funct 8:2875–2885CrossRefGoogle Scholar
  15. Gao Y, Li G, Li C, Zhu X, Li M, Fu C (2009) Anti-nociceptive and anti-inflammatory activity of sophocarpine. J Ethnopharmacol 125:324–329CrossRefGoogle Scholar
  16. Gao S, Liu Z, Li H, Little PJ, Liu P, Xu S (2012) Cardiovascular actions and therapeutic potential of tanshinone IIA. Atherosclerosis 220:3–10CrossRefGoogle Scholar
  17. Gao LN, Feng QS, Zhang XF, Wang QS, Cui YL (2016) Tetrandrine suppresses articular inflammatory response by inhibiting pro-inflammatory factors via NF-κB inactivation. J Orthop Res 34:1557–1568CrossRefGoogle Scholar
  18. Guo Y, Xu X, Li Q, Li Z, Du F (2010) Anti-inflammation effects of picroside 2 in cerebral ischemic injury rats. Behav Brain Funct 6:43CrossRefGoogle Scholar
  19. Guo X, Xue M, Li CJ, Yang W, Wang SS, Ma ZJ et al (2016) Protective effects of triptolide on TLR4 mediated autoimmune and inflammatory response induced myocardial fibrosis in diabetic cardiomyopathy. J Ethnopharmacol 193:333–344CrossRefGoogle Scholar
  20. Han JY, Fan JY, Horie Y, Miura S, Cui DH, Ishii H et al (2008) Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol Ther 117:280–295CrossRefGoogle Scholar
  21. Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O et al (2002) Involvement of reactive oxygen species mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol 34:233–240CrossRefGoogle Scholar
  22. Hsin KY, Matsuoka Y, Asai Y, Kamiyoshi K, Watanabe T, Kawaoka Y et al (2016) SystemsDock: a web server for network pharmacology-based prediction and analysis. Nucleic Acids Res 44:507–513CrossRefGoogle Scholar
  23. Hu Y, Baud V, Oga T, Kim KI, Yoshida K, Karin M (2001) IKKalpha controls formation of the epidermis independently of NF-kappaB. Nature 410:710–714CrossRefGoogle Scholar
  24. Huang P, Zhang L, Chai C, Qian XC, Li W, Li JS et al (2014) Effects of food and gender on the pharmacokinetics of ginkgolides A, B, C and bilobalide in rats after oral dosing with ginkgo terpene lactones extract. J Pharm Biomed Anal 100:138–144CrossRefGoogle Scholar
  25. Jeon KI, Byun MS, Jue DM (2003) Gold compound auranofin inhibits IkappaB kinase (IKK) by modifying Cys-179 of IKKbeta subunit. Exp Mol Med 35:61–66CrossRefGoogle Scholar
  26. Jiang C, Tong YL, Zhang D, Liu LZ, Wang JF (2017) Sinomenine prevents the development of cardiomyopathy in diabetic rats by inhibiting inflammatory responses and blocking activation of NF-κB. Gen Physiol Biophys 36:65–74CrossRefGoogle Scholar
  27. Kuchta K, Volk RB, Rauwald HW (2013) Stachydrine in Leonurus cardiaca, Leonurus japonicus, Leonotis leonurus: detection and quantification by instrumental HPTLC and 1H-qNMR analyses. Pharmazie 68:534Google Scholar
  28. Lau AJ, Yang G, Rajaraman G, Baucom CC, Chang TK (2013) Evaluation of Ginkgo biloba extract as an activator of human glucocorticoid receptor. J Ethnopharmacol 145:670–675CrossRefGoogle Scholar
  29. Lauria A, Ippolito M, Fazzari M, Tutone M, Di Blasi F, Mingoia F et al (2010) IKK-beta inhibitors: an analysis of drug-receptor interaction by using molecular docking and pharmacophore 3D-QSAR approaches. J Mol Graph Model 29:72–81CrossRefGoogle Scholar
  30. Li HL, Chen HL, Li H, Zhang KL, Chen XY, Wang XW et al (2005) Regulatory effects of emodin on NF-kappaB activation and inflammatory cytokine expression in RAW 264.7 macrophages. Int J Mol Med 16:41–47Google Scholar
  31. Li J, Yang D, Yu K, He J, Zhang Y (2010) Determination of diosgenin content in medicinal plants with enzyme-linked immunosorbent assay. Planta Med 76:1915–1920CrossRefGoogle Scholar
  32. Li C, Gao Y, Tian J, Shen J, Xing Y, Liu Z (2011) Sophocarpine administration preserves myocardial function from ischemia-reperfusion in rats via NF-κB inactivation. J Ethnopharmacol 135:620–625CrossRefGoogle Scholar
  33. Li J, Li L, Chu H, Sun X, Ge Z (2014) Oral sophocarpine protects rat heart against pressure overload-induced cardiac fibrosis. Pharm Biol 52:1045–1051CrossRefGoogle Scholar
  34. Li JZ, Xie M, Mo D, Zhao XF, Yu SY, Liu LJ et al (2016) Picroside II protects myocardium from ischemia/reperfusion-induced injury through inhibition of the inflammatory response. Exp Ther Med 12:3507–3514CrossRefGoogle Scholar
  35. Li R, Lu K, Wang Y, Chen M, Zhang F, Shen H et al (2017) Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression. Biochem Biophys Res Commun 485:69–75CrossRefGoogle Scholar
  36. Li S, Niu H, Qiao Y, Zhu R, Sun Y, Ren Z et al (2018a) Terpenoids isolated from Chinese liverworts Lepidozia reptans and their anti-inflammatory activity. Bioorg Med Chem 26:2392–2400CrossRefGoogle Scholar
  37. Li X, Wang M, Hong H, Luo C, Liu Z, Yang R (2018b) Sophocarpine attenuates murine lupus nephritis via inhibiting NLRP3 inflammasome and NF-κB activation. Immunol Res 66:521–527CrossRefGoogle Scholar
  38. Lim DW, Lee C, Kim IH, Kim YT (2013) Anti-inflammatory effects of total isoflavones from Pueraria lobata on cerebral ischemia in rats. Molecules 18:10404–10412CrossRefGoogle Scholar
  39. Lin MX, Yi YX, Fang PP, Huang SS, Pan CW, Jin LX et al (2017) Shikonin protects against D-Galactosamine and lipopolysaccharide-induced acute hepatic injury by inhibiting TLR4 signaling pathway. Oncotarget 8:91542–91550Google Scholar
  40. Liu XH, Xin H, Hou AJ, Zhu YZ (2009) Protective effects of leonurine in neonatal rat hypoxic cardiomyocytes and rat infarcted heart. Clin Exp Pharmacol Physiol 36:696–703CrossRefGoogle Scholar
  41. Liu XH, Pan LL, Deng HY, Xiong QH, Wu D, Huang GY et al (2013) Leonurine (SCM-198) attenuates myocardial fibrotic response via inhibition of NADPH oxidase 4. Free Radic Biol Med 54:93–104CrossRefGoogle Scholar
  42. Liu N, Wu C, Sun L, Zheng J, Guo P (2014) Sesamin enhances cholesterol efflux in RAW264.7 macrophages. Molecules 19:7516–7527Google Scholar
  43. Liu Y, Xu W, Wang G, Qin X (2018) Material basis research for Huangqi Jianzhong Tang against chronic atrophic gastritis rats through integration of urinary metabonomics and SystemsDock. J Ethnopharmacol 223:1–9CrossRefGoogle Scholar
  44. Luo P, Wong YF, Ge L, Zhang ZF, Liu Y, Liu L et al (2010) Anti-inflammatory and analgesic effect of plumbagin through inhibition of nuclear factor-κB activation. J Pharmacol Exp Ther 335:735–742CrossRefGoogle Scholar
  45. Lyu X, Lee J, Chen WN (2019) Potential natural food preservatives and their sustainable production in Yeast: terpenoids and polyphenols. J Agric Food Chem 67:4397–4417CrossRefGoogle Scholar
  46. Meng S, Wang LS, Huang ZQ, Zhou Q, Sun YG, Cao JT et al (2012) Berberine ameliorates inflammation in patients with acute coronary syndrome following percutaneous coronary intervention. Clin Exp Pharmacol Physiol 39:406–411CrossRefGoogle Scholar
  47. Meng YY, Liu Y, Hu ZF, Zhang Y, Ni J, Ma ZG et al (2018) Sanguinarine attenuates lipopolysaccharide-induced inflammation and apoptosis by inhibiting the TLR4/NF-κB pathway in H9c2 cardiomyocytes. Curr Med Sci 38:204–211CrossRefGoogle Scholar
  48. Moss NC, Stansfield WE, Willis MS, Tang RH, Selzman CH (2007) IKKbeta inhibition attenuates myocardial injury and dysfunction following acute ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 293:H2248–H2253CrossRefGoogle Scholar
  49. Pang H, Han B, Yu T, Peng Z (2014) The complex regulation of tanshinone IIA in rats with hypertension-induced left ventricular hypertrophy. PLoS ONE 9:e92216CrossRefGoogle Scholar
  50. Panichayupakaranant P, Ahmad MI (2016) Plumbagin and its role in chronic diseases. Adv Exp Med Biol 929:229–246CrossRefGoogle Scholar
  51. Patil KR, Mohapatra P, Patel HM, Goyal SN, Ojha S, Kundu CN et al (2015) Pentacyclic triterpenoids inhibit IKKβ mediated activation of NF-κB pathway: in silico and in vitro evidences. PLoS ONE 10:e0125709CrossRefGoogle Scholar
  52. Peng L, Sun S, Xie LH, Wicks SM, Xie JT (2012) Ginsenoside Re: pharmacological effects on cardiovascular system. Cardiovasc Ther 30:e183–188CrossRefGoogle Scholar
  53. Ramiro S, Sepriano A, Chatzidionysiou K, Nam JL, Smolen JS, van der Heijde D et al (2017) Safety of synthetic and biological DMARDs: a systematic literature review informing the 2013 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis 76:1101–1136CrossRefGoogle Scholar
  54. Reese S, Vidyasagar A, Jacobson L, Acun Z, Esnault S, Hullett D et al (2010) The Pin 1 inhibitor juglone attenuates kidney fibrogenesis via Pin 1-independent mechanisms in the unilateral ureteral occlusion model. Fibrogenesis Tissue Repair 3:1CrossRefGoogle Scholar
  55. Salminen A, Lehtonen M, Suuronen T, Kaarniranta K, Huuskonen J (2008) Terpenoids: natural inhibitors of NF-kappaB signaling with anti-inflammatory and anticancer potential. Cell Mol LifeSci 65:2979–2999CrossRefGoogle Scholar
  56. Servillo L, D'Onofrio N, Longobardi L, Sirangelo I, Giovane A, Cautela D et al (2013) Stachydrine ameliorates high-glucose induced endothelial cell senescence and SIRT1 downregulation. J Cell Biochem 114:2522–2530CrossRefGoogle Scholar
  57. Sheeja E, Joshi SB, Jain DC (2010) Bioassay-guided isolation of anti-inflammatory and antinociceptive compound from Plumbago zeylanica leaf. Pharm Biol 48:381–387CrossRefGoogle Scholar
  58. Shen DF, Tang QZ, Yan L, Zhang Y, Zhu LH, Wang L et al (2010) Tetrandrine blocks cardiac hypertrophy by disrupting reactive oxygen species-dependent ERK1/2 signalling. Br J Pharmacol 159:970–981CrossRefGoogle Scholar
  59. Shindo S, Hosokawa Y, Hosokawa I, Ozaki K, Matsuo T (2016) Shikonin inhibits inflammatory cytokine production in human periodontal ligament cells. Inflammation 39:1124–1129Google Scholar
  60. Strnad J, Burke JR (2007) I kappa B kinase inhibitors for treating autoimmune and inflammatory disorders: potential and challenges. Trends Pharmacol Sci 28:142–148CrossRefGoogle Scholar
  61. Su S, Li Q, Liu Y, Xiong C, Li J, Zhang R et al (2014) Sesamin ameliorates doxorubicin-induced cardiotoxicity: involvement of Sirt1 and Mn-SOD pathway. Toxicol Lett 224:257–263CrossRefGoogle Scholar
  62. Tang S, Shen XY, Huang HQ, Xu SW, Yu Y, Zhou CH et al (2011) Cryptotanshinone suppressed inflammatory cytokines secretion in RAW264.7 macrophages through inhibition of the NF-kappaB and MAPK signaling pathways. Inflammation 34:111–118Google Scholar
  63. Tang S, Wen Q, Liu P, Zhu Z, Li N, Zhang X et al (2015) Effects of cryptotanshinone on the expression levels of inflammatory factors in myocardial cells caused by Ang II and its mechanism. Int J Clin Exp Med 8:12617–12623Google Scholar
  64. Venardos K, Harrison G, Headrick J, Perkins A (2004) Auranofin increases apoptosis and ischaemia-reperfusion injury in the rat isolated heart. Clin Exp Pharmacol Physiol 31:289–294CrossRefGoogle Scholar
  65. Wang QS, Gao T, Cui YL, Gao LN, Jiang HL (2014) Comparative studies of paeoniflorin and albiflorin from Paeonia lactiflora on anti-inflammatory activities. Pharm Biol 52:1189–1195CrossRefGoogle Scholar
  66. Wang SX, Wang J, Shao JB, Tang WN, Zhong JQ (2016) Plumbagin mediates cardioprotection against myocardial ischemia/reperfusion injury through Nrf-2 signaling. Med Sci Monit 22:1250–1257CrossRefGoogle Scholar
  67. Wang KS, Li J, Wang Z, Mi C, Ma J, Piao LX et al (2017) Artemisinin inhibits inflammatory response via regulating NF-κB and MAPK signaling pathways. Immunopharmacol Immunotoxicol 39:28–36CrossRefGoogle Scholar
  68. Wang QW, Yu XF, Xu HL, Jiang YC, Zhao XZ, Sui DY (2018a) Ginsenoside Re attenuates isoproterenol-induced myocardial injury in rats. Evid Based Complement Alternat Med 2018:8637134Google Scholar
  69. Wang HW, Liu HJ, Cao H, Qiao ZY, Xu YW (2018b) Diosgenin protects rats from myocardial inflammatory injury induced by ischemia-reperfusion. Med Sci Monit 24:246–253CrossRefGoogle Scholar
  70. Wang L, Ma H, Xue Y, Shi H, Ma T, Cui X (2018c) Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways. Exp Ther Med 15:1225–1232Google Scholar
  71. Wang JL, Li L, Hu MB, Wu B, Fan WX, Peng W et al (2019a) In silico drug design of inhibitor of nuclear factor kappa B kinase subunit betainhibitors from 2-acylamino-3-aminothienopyridines based on quantitative structure-activity relationships and molecular docking. Comput Biol Chem 78:297–305CrossRefGoogle Scholar
  72. Wang R, Li D, Ouyang J, Tian X, Zhao Y, Peng X et al (2019b) Leonurine alleviates LPS-induced myocarditis through suppressing the NF-кB signaling pathway. Toxicology 422:1–13CrossRefGoogle Scholar
  73. Wu DM, Wang YJ, Han XR, Wen X, Li L, Xu L et al (2018) Tanshinone IIA prevents left ventricular remodelling via the TLR4/MyD88/NF-κB signalling pathway in rats with myocardial infarction. J Cell Mol Med 22:3058–3072CrossRefGoogle Scholar
  74. Xiong Z, Sun G, Zhu C, Cheng B, Zhang C, Ma Y et al (2010) Artemisinin, an anti-malarial agent, inhibits rat cardiac hypertrophy via inhibition of NF-κB signaling. Eur J Pharmacol 649:277–284CrossRefGoogle Scholar
  75. Yang D, Jia W, Zhu YZ (2016) Leonurine, a potential agent of traditional Chinese medicine: recent updates and future perspectives. Nat Prod Commun 11:1757–1761Google Scholar
  76. Yang J, Wang Z, Chen DL (2017) Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress. Biomed Pharmacother 93:1343–1357CrossRefGoogle Scholar
  77. Ye B, Chen X, Dai S, Han J, Liang X, Lin S et al (2019) Emodin alleviates myocardial ischemia/reperfusion injury by inhibiting gasdermin d-mediated pyroptosis in cardiomyocytes. Drug Des Dev Ther 13:975–990CrossRefGoogle Scholar
  78. Yu Y, Zhang M, Hu Y, Zhao Y, Teng F, Lv X et al (2018) Increased bioavailable berberine protects against myocardial ischemia reperfusion injury through attenuation of NFκB and JNK signaling pathways. Int Heart J 59:1378–1388CrossRefGoogle Scholar
  79. Zhang Z, Qu X, Ni Y, Zhang K, Dong Z, Yan X et al (2013) Triptolide protects rat heart against pressure overload-induced cardiac fibrosis. Int J Cardiol 168:2498–2505CrossRefGoogle Scholar
  80. Zhang R, Han D, Li Z, Shen C, Zhang Y, Li J et al (2018) Ginkgolide C alleviates myocardial ischemia/reperfusion-induced inflammatory injury via inhibition of CD40-NF-κB pathway. Front Pharmacol 9:109CrossRefGoogle Scholar
  81. Zhang Y, Huang X, Chen H, Zhou D, Yang Z, Wang K et al (2019) Discovery of anti-inflammatory terpenoids from Mallotus conspurcatus croizat. J Ethnopharmacol 231:170–178CrossRefGoogle Scholar
  82. Zhao XX, Peng C, Zhang H, Qin LP (2012) Sinomenium acutum: a review of chemistry, pharmacology, pharmacokinetics, and clinical use. Pharm Biol 50:1053–1061CrossRefGoogle Scholar
  83. Zhao L, Wu D, Sang M, Xu Y, Liu Z, Wu Q (2017) Stachydrine ameliorates isoproterenol-induced cardiac hypertrophy and fibrosis by suppressing inflammation and oxidative stress through inhibiting NF-κB and JAK/STAT signaling pathways in rats. Int Immunopharmacol 48:102–109CrossRefGoogle Scholar
  84. Zhao Y, Tian X, Liu G, Wang K, Xie Y, Qiu Y (2019) Berberine protects myocardial cells against anoxia-reoxygenation injury via p38 MAPK-mediated NF-κB signaling pathways. Exp Ther Med 17:230–236Google Scholar
  85. Zhou H, Yang HX, Yuan Y, Deng W, Zhang JY, Bian ZY et al (2013) Paeoniflorin attenuates pressure overload-induced cardiac remodeling via inhibition of TGFβ/Smads and NF-κB pathways. J Mol Histol 44:357–367CrossRefGoogle Scholar
  86. Zhou P, Yang X, Jia X, Yu J, Asenso J, Xiao F et al (2016) Effect of 6'-acetylpaeoniflorin on dinitrochlorobenzene-induced allergic contact dermatitis in BALB/c mice. Immunol Res 64:857–868CrossRefGoogle Scholar
  87. Ziaei S, Halaby R (2016) Immunosuppressive, anti-inflammatory and anti-cancer properties of triptolide: a mini review. Avicenna J Phytomed 6:149–164Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Pharmacy SchoolAnhui Xinhua UniversityHefeiPeople’s Republic of China
  2. 2.Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiPeople’s Republic of China
  3. 3.School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiPeople’s Republic of China
  4. 4.Institute of Integrated Chinese and Western MedicineAnhui Academy of Chinese MedicineHefeiPeople’s Republic of China
  5. 5.Anhui Province Key Laboratory of Chinese Medicinal FormulaHefeiPeople’s Republic of China

Personalised recommendations