, Volume 27, Issue 6, pp 1217–1227 | Cite as

Evaluation of the therapeutic potential of the selective p38 MAPK inhibitor Skepinone-L and the dual p38/JNK 3 inhibitor LN 950 in experimental K/BxN serum transfer arthritis

  • Philipp Guenthoer
  • Kerstin Fuchs
  • Gerald Reischl
  • Leticia Quintanilla-Martinez
  • Irene Gonzalez-Menendez
  • Stefan Laufer
  • Bernd J. Pichler
  • Manfred KneillingEmail author
Original Article



Mitogen-activated protein kinase (MAPK) signaling plays an important role in inflammatory diseases such as rheumatoid arthritis (RA).The aim of our study was to elucidate the therapeutic potential of the highly selective p38 MAPK inhibitor Skepinone-L and the dual inhibitor LN 950 (p38 MAPK and JNK 3) in the K/BxN serum transfer model of RA. Additionally, we aimed to monitor MAPK treatment non-invasively in vivo using the hypoxia tracer [18F]fluoromisonidazole ([18F]FMISO) and positron emission tomography (PET).


To induce experimental arthritis, we injected glucose-6-phosphate isomerase autoantibody-containing serum in BALB/c mice. MAPK inhibitor or Sham treatment was administered per os once daily. On days 3 and 6 after arthritis induction, we conducted PET imaging with [18F]FMISO. At the end of the experiment, ankles were harvested for histopathological analysis.


Skepinone-L and LN 950 were applicable to suppress the severity of experimental arthritis confirmed by reduced ankle swelling and histopathological analysis. Skepinone-L (3.18 ± 0.19 mm) and LN 950 (3.40 ± 0.13 mm) treatment yielded a significantly reduced ankle thickness compared to Sham-treated mice (3.62 ± 0.11 mm) on day 5 after autoantibody transfer, a time-point characterized by severe arthritis. Hypoxia imaging with [18F]FMISO revealed non-conclusive results and might not be an appropriate tool to monitor MAPK therapy in experimental RA.


Both the selective p38 MAPK inhibitor Skepinone-L and the dual (p38 MAPK and JNK 3) inhibitor LN 950 exhibited significant therapeutic effects during experimental arthritis. Thus, our study contributes to the ongoing discussion on the use of p38 MAPK as a potential target in RA.


Rheumatoid arthritis Mitogen-activated protein kinase Hypoxia imaging PET 



We thank Denis Lamparter, Sandro Aidone and Maren Koenig, Werner Siemens Imaging Center, Laboratory for Preclinical Imaging and Radiopharmacy, University of Tuebingen, for their excellent technical support of the study.


This work was supported by Werner Siemens Foundation (Zug, Switzerland) and the Interdisciplinary Center for Clinical Research of the University of Tübingen (IZKF) and the DFG through the CRC 156 (project C03).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

10787_2019_593_MOESM1_ESM.docx (703 kb)
Supplementary material 1 (docx 704 kb)


  1. Aho O-M, Finnilä M, Thevenot J, Saarakkala S, Lehenkari P (2017) Subchondral bone histology and grading in osteoarthritis. PLoS One 12:e0173726PubMedPubMedCentralGoogle Scholar
  2. Arthur JS, Ley SC (2013) Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13:679–692PubMedGoogle Scholar
  3. Bevaart L, Vervoordeldonk MJ, Tak PP (2010) Evaluation of therapeutic targets in animal models of arthritis: how does it relate to rheumatoid arthritis? Arthritis Rheum 62:2192–2205PubMedGoogle Scholar
  4. Burnette BL, Selness S, Devraj R, Jungbluth G, Kurumbail R, Stillwell L, Anderson G, Mnich S, Hirsch J, Compton R, De Ciechi P, Hope H, Hepperle M, Keith RH, Naing W, Shieh H, Portanova J, Zhang Y, Zhang J, Leimgruber RM, Monahan J (2009) SD0006: a potent, selective and orally available inhibitor of p38 kinase. Pharmacology 84:42–60PubMedPubMedCentralGoogle Scholar
  5. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864PubMedGoogle Scholar
  6. Chaudhari AJ, Bowen SL, Burkett GW, Packard NJ, Godinez F, Joshi AA, Naguwa SM, Shelton DK, Hunter JC, Boone JM, Buonocore MH, Badawi RD (2010) High-resolution (18)F-FDG PET with MRI for monitoring response to treatment in rheumatoid arthritis. Eur J Nucl Med Mol Imaging 37:1047PubMedPubMedCentralGoogle Scholar
  7. Choy EH, Kavanaugh AF, Jones SA (2013) The problem of choice: current biologic agents and future prospects in RA. Nat Rev Rheumatol 9:154–163PubMedGoogle Scholar
  8. Cohen SB, Cheng TT, Chindalore V, Damjanov N, Burgos-Vargas R, Delora P, Zimany K, Travers H, Caulfield JP (2009) Evaluation of the efficacy and safety of pamapimod, a p38 MAP kinase inhibitor, in a double-blind, methotrexate-controlled study of patients with active rheumatoid arthritis. Arthritis Rheum 60:335–344PubMedGoogle Scholar
  9. Corr M, Boyle DL, Ronacher LM, Lew BR, Van Baarsen LG, Tak PP, Firestein GS (2011) Interleukin 1 receptor antagonist mediates the beneficial effects of systemic interferon beta in mice: implications for rheumatoid arthritis. Ann Rheum Dis 70:858–863PubMedPubMedCentralGoogle Scholar
  10. Damjanov N, Kauffman RS, Spencer-Green GT (2009) Efficacy, pharmacodynamics, and safety of VX-702, a novel p38 MAPK inhibitor, in rheumatoid arthritis: results of two randomized, double-blind, placebo-controlled clinical studies. Arthritis Rheum 60:1232–1241PubMedGoogle Scholar
  11. Davis RJ (2000) Signal transduction by the JNK Group of MAP kinases. Cell 103:239–252PubMedGoogle Scholar
  12. Denninger K, Rasmussen S, Larsen JM, Ørskov C, Seier Poulsen S, Sørensen P, Christensen JP, Illges H, Ødum N, Labuda T (2011) JNK1, but not JNK2, is required in two mechanistically distinct models of inflammatory arthritis. Am J Pathol 179:1884–1893PubMedPubMedCentralGoogle Scholar
  13. Ding C (2006) Drug evaluation: VX-702, a MAP kinase inhibitor for rheumatoid arthritis and acute coronary syndrome. Curr Opin Investig Drugs 7:1020–1025PubMedGoogle Scholar
  14. Ebelt ND, Cantrell MA, Van Den Berg CL (2013) c-Jun N-terminal kinases mediate a wide range of targets in the metastatic cascade. Genes Cancer 4:378–387PubMedPubMedCentralGoogle Scholar
  15. Feng YJ, Li YY (2011) The role of p38 mitogen-activated protein kinase in the pathogenesis of inflammatory bowel disease. J Dig Dis 12:327–332PubMedGoogle Scholar
  16. Finnegan A, Kaplan CD, Cao Y, Eibel H, Glant TT, Zhang J (2003) Collagen-induced arthritis is exacerbated in IL-10-deficient mice. Arthritis Res Therapy 5:R18–R24Google Scholar
  17. Fuchs K, Kohlhofer U, Quintanilla-Martinez L, Lamparter D, Kotter I, Reischl G, Rocken M, Pichler BJ, Kneilling M (2013) In vivo imaging of cell proliferation enables the detection of the extent of experimental rheumatoid arthritis by 3′-deoxy-3′-18f-fluorothymidine and small-animal PET. J Nucl Med 54:151–158PubMedGoogle Scholar
  18. Fuchs K, Kuehn A, Mahling M, Guenthoer P, Hector A, Schwenck J, Hartl D, Laufer S, Kohlhofer U, Quintanilla-Martinez L, Reischl G, Rocken M, Pichler BJ, Kneilling M (2017) In vivo hypoxia PET imaging quantifies the severity of arthritic joint inflammation in line with overexpression of hypoxia-inducible factor and enhanced reactive oxygen species generation. J Nucl Med 58:853–860PubMedGoogle Scholar
  19. Fukushima A, Boyle DL, Corr M, Firestein GS (2010) Kinetic analysis of synovial signalling and gene expression in animal models of arthritis. Ann Rheum Dis 69:918–923PubMedGoogle Scholar
  20. Genovese MC (2009) Inhibition of p38: has the fat lady sung? Arthritis Rheum 60:317–320PubMedGoogle Scholar
  21. Genovese MC, Cohen SB, Wofsy D, Weinblatt ME, Firestein GS, Brahn E, Strand V, Baker DG, Tong SE (2011) A 24-week, randomized, double-blind, placebo-controlled, parallel group study of the efficacy of oral SCIO-469, a p38 mitogen-activated protein kinase inhibitor, in patients with active rheumatoid arthritis. J Rheumatol 38:846–854PubMedGoogle Scholar
  22. Goldstein DM, Kuglstatter A, Lou Y, Soth MJ (2010) Selective p38alpha inhibitors clinically evaluated for the treatment of chronic inflammatory disorders. J Med Chem 53:2345–2353PubMedGoogle Scholar
  23. Guma M, Firestein GS (2012) c-Jun N-terminal kinase in inflammation and rheumatic diseases. Open Rheumatol J 6:220–231PubMedPubMedCentralGoogle Scholar
  24. Guma M, Hammaker D, Topolewski K, Corr M, Boyle DL, Karin M, Firestein GS (2012) Antiinflammatory functions of p38 in mouse models of rheumatoid arthritis: advantages of targeting upstream kinases MKK-3 or MKK-6. Arthritis Rheum 64:2887–2895PubMedPubMedCentralGoogle Scholar
  25. Hammaker D, Firestein GS (2010) “Go upstream, young man”: lessons learned from the p38 saga. Ann Rheum Dis 69(Suppl 1):i77–i82PubMedPubMedCentralGoogle Scholar
  26. Hammaker D, Topolewski K, Edgar M, Yoshizawa T, Fukushima A, Boyle DL, Burak EC, Sah RL, Firestein GS (2012) Decreased collagen-induced arthritis severity and adaptive immunity in MKK-6-deficient mice. Arthritis Rheum 64:678–687PubMedPubMedCentralGoogle Scholar
  27. Han Z, Boyle DL, Chang L, Bennett B, Karin M, Yang L, Manning AM, Firestein GS (2001) c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J Clin Invest 108:73–81PubMedPubMedCentralGoogle Scholar
  28. Hill RJ, Dabbagh K, Phippard D, Li C, Suttmann RT, Welch M, Papp E, Song KW, Chang KC, Leaffer D, Kim YN, Roberts RT, Zabka TS, Aud D, Dal Porto J, Manning AM, Peng SL, Goldstein DM, Wong BR (2008) Pamapimod, a novel p38 mitogen-activated protein kinase inhibitor: preclinical analysis of efficacy and selectivity. J Pharmacol Exp Ther 327:610–619PubMedGoogle Scholar
  29. Horsfall AC, Butler DM, Marinova L, Warden PJ, Williams RO, Maini RN, Feldmann M (1997) Suppression of collagen-induced arthritis by continuous administration of IL-4. J Immunol 159:5687–5696PubMedGoogle Scholar
  30. Hu P, Nebreda AR, Liu Y, Carlesso N, Kaplan M, Kapur R (2012) p38alpha protein negatively regulates T helper type 2 responses by orchestrating multiple T cell receptor-associated signals. J Biol Chem 287:33215–33226PubMedPubMedCentralGoogle Scholar
  31. Hu F, Shi L, Mu R, Zhu J, Li Y, Ma X, Li C, Jia R, Yang D, Li Y, Li Z (2013) Hypoxia-inducible factor-1alpha and interleukin 33 form a regulatory circuit to perpetuate the inflammation in rheumatoid arthritis. PLoS One 8:e72650PubMedPubMedCentralGoogle Scholar
  32. Inoue T, Boyle DL, Corr M, Hammaker D, Davis RJ, Flavell RA, Firestein GS (2006) Mitogen-activated protein kinase kinase 3 is a pivotal pathway regulating p38 activation in inflammatory arthritis. Proc Natl Acad Sci USA 103:5484–5489PubMedGoogle Scholar
  33. Ji H, Pettit A, Ohmura K, Ortiz-Lopez A, Duchatelle V, Degott C, Gravallese E, Mathis D, Benoist C (2002) Critical roles for interleukin 1 and tumor necrosis factor alpha in antibody-induced arthritis. J Exp Med 196:77–85PubMedPubMedCentralGoogle Scholar
  34. Katchamart W, Johnson S, Lin HJ, Phumethum V, Salliot C, Bombardier C (2010) Predictors for remission in rheumatoid arthritis patients: a systematic review. Arthritis Care Res 62:1128–1143Google Scholar
  35. Khandrika L, Lieberman R, Koul S, Kumar B, Maroni P, Chandhoke R, Meacham RB, Koul HK (2009) Hypoxia associated p38 mitogen activated protein kinase mediated androgen receptor activation and increased Hif-1α levels contribute to emergence of an aggressive phenotype in prostate cancer. Oncogene 28:1248–1260PubMedPubMedCentralGoogle Scholar
  36. Kim C, Sano Y, Todorova K, Carlson BA, Arpa L, Celada A, Lawrence T, Otsu K, Brissette JL, Arthur JS, Park JM (2008) The kinase p38 alpha serves cell type-specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression. Nat Immunol 9:1019–1027PubMedPubMedCentralGoogle Scholar
  37. Kneilling M, Hultner L, Pichler BJ, Mailhammer R, Morawietz L, Solomon S, Eichner M, Sabatino J, Biedermann T, Krenn V, Weber WA, Illges H, Haubner R, Rocken M (2007) Targeted mast cell silencing protects against joint destruction and angiogenesis in experimental arthritis in mice. Arthritis Rheum 56:1806–1816PubMedGoogle Scholar
  38. Koeberle SC, Romir J, Fischer S, Koeberle A, Schattel V, Albrecht W, Grutter C, Werz O, Rauh D, Stehle T, Laufer SA (2012) Skepinone-L is a selective p38 mitogen-activated protein kinase inhibitor. Nat Chem Biol 8:141–143Google Scholar
  39. Konisti S, Kiriakidis S, Paleolog EM (2012) Hypoxia—a key regulator of angiogenesis and inflammation in rheumatoid arthritis. Nat Rev Rheumatol 8:153–162PubMedGoogle Scholar
  40. Korganow AS, Ji H, Mangialaio S, Duchatelle V, Pelanda R, Martin T, Degott C, Kikutani H, Rajewsky K, Pasquali JL, Benoist C, Mathis D (1999) From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 10:451–461PubMedGoogle Scholar
  41. Krementsov DN, Thornton TM, Teuscher C, Rincon M (2013) The emerging role of p38 mitogen-activated protein kinase in multiple sclerosis and its models. Mol Cell Biol 33:3728–3734PubMedPubMedCentralGoogle Scholar
  42. Kyttaris VC (2012) Kinase inhibitors: a new class of antirheumatic drugs. Drug Des Devel Ther 6:245–250PubMedPubMedCentralGoogle Scholar
  43. Lee JC, Laydon JT, Mcdonnell PC, Gallagher TF, Kumar S, Green D, Mcnulty D, Blumenthal MJ, Heys JR, Landvatter SW et al (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372:739–746PubMedGoogle Scholar
  44. Li C, Beavis P, Palfreeman AC, Amjadi P, Kennedy A, Brennan FM (2011) Activation of p38 mitogen-activated protein kinase is critical step for acquisition of effector function in cytokine-activated T cells, but acts as a negative regulator in T cells activated through the T-cell receptor. Immunology 132:104–110PubMedPubMedCentralGoogle Scholar
  45. Malemud CJ (2013) Intracellular signaling pathways in rheumatoid arthritis. J Clin Cell Immunol 4:160PubMedPubMedCentralGoogle Scholar
  46. Martin JH, Mohit AA, Miller CA (1996) Developmental expression in the mouse nervous system of the p493F12 SAP kinase. Mol Brain Res 35:47–57PubMedGoogle Scholar
  47. Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem 275:31155–31161PubMedGoogle Scholar
  48. Mavropoulos A, Rigopoulou EI, Liaskos C, Bogdanos DP, Sakkas LI (2013) The role of p38 MAPK in the aetiopathogenesis of psoriasis and psoriatic arthritis. Clin Dev Immunol 2013:569751PubMedPubMedCentralGoogle Scholar
  49. Mcinnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219PubMedGoogle Scholar
  50. Meier FM, Mcinnes IB (2014) Small-molecule therapeutics in rheumatoid arthritis: scientific rationale, efficacy and safety. Best Pract Res Clin Rheumatol 28:605–624PubMedGoogle Scholar
  51. Mion F, Tonon S, Toffoletto B, Cesselli D, Pucillo CE, Vitale G (2014) IL-10 production by B cells is differentially regulated by immune-mediated and infectious stimuli and requires p38 activation. Mol Immunol 62:266–276PubMedGoogle Scholar
  52. Mnich SJ, Blanner PM, Hu LG, Shaffer AF, Happa FA, O’neil S, Ukairo O, Weiss D, Welsh E, Storer C, Mbalaviele G, Ichijo H, Monahan JB, Hardy MM, Eda H (2010) Critical role for apoptosis signal-regulating kinase 1 in the development of inflammatory K/BxN serum-induced arthritis. Int Immunopharmacol 10:1170–1176PubMedGoogle Scholar
  53. Monach P, Hattori K, Huang H, Hyatt E, Morse J, Nguyen L, Ortiz-Lopez A, Wu HJ, Mathis D, Benoist C (2007) The K/BxN mouse model of inflammatory arthritis: theory and practice. Methods Mol Med 136:269–282PubMedGoogle Scholar
  54. Mountz JM, Alavi A, Mountz JD (2012) Emerging optical and nuclear medicine imaging methods in rheumatoid arthritis. Nat Rev Rheumatol 8:719–728PubMedGoogle Scholar
  55. Nandakumar KS, Holmdahl R (2006) Antibody-induced arthritis: disease mechanisms and genes involved at the effector phase of arthritis. Arthritis Res Ther 8:223PubMedGoogle Scholar
  56. Nikas SN, Drosos AA (2004) SCIO-469 Scios Inc. Curr Opin Investig Drugs 5:1205–1212PubMedGoogle Scholar
  57. Nunn A, Linder K, Strauss HW (1995) Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 22:265–280PubMedGoogle Scholar
  58. Paunovic V, Harnett MM (2013) Mitogen-activated protein kinases as therapeutic targets for rheumatoid arthritis. Drugs 73:101–115PubMedGoogle Scholar
  59. Pi X, Wu Y, Ferguson JE, Portbury AL, Patterson C (2009) SDF-1α stimulates JNK3 activity via eNOS-dependent nitrosylation of MKP7 to enhance endothelial migration. Proc Natl Acad Sci USA 106:5675–5680PubMedGoogle Scholar
  60. Pierre K, Christiane B, Hartmut J, Stefan L (2008) Targeting the ribose and phosphate binding site of p38 mitogen-activated protein (MAP) kinase: synthesis and biological testing of 2-alkylsulfanyl-, 4(5)-aryl-, 5(4)-heteroaryl-substituted imidazoles. J Med Chem 51:5630–5640Google Scholar
  61. Rudalska R, Dauch D, Longerich T, Mcjunkin K, Wuestefeld T, Kang T-W, Hohmeyer A, Pesic M, Leibold J, Von Thun A, Schirmacher P, Zuber J, Weiss K-H, Powers S, Malek NP, Eilers M, Sipos B, Lowe SW, Geffers R, Laufer S, Zender L (2014) In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nat Med 20:1138–1146PubMedPubMedCentralGoogle Scholar
  62. Sanchez A, Tripathy D, Yin X, Desobry K, Martinez J, Riley J, Gay D, Luo J, Grammas P (2012) p38 MAPK: a mediator of hypoxia-induced cerebrovascular inflammation. J Alzheimers Dis 32:587–597PubMedGoogle Scholar
  63. Saraiva M, O’garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10:170–181PubMedGoogle Scholar
  64. Saraiva M, Christensen JR, Veldhoen M, Murphy TL, Murphy KM, O’garra A (2009) Interleukin-10 production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity 31:209–219PubMedPubMedCentralGoogle Scholar
  65. Schett G, Tohidast-Akrad M, Smolen JS, Schmid BJ, Steiner CW, Bitzan P, Zenz P, Redlich K, Xu Q, Steiner G (2000) Activation, differential localization, and regulation of the stress-activated protein kinases, extracellular signal-regulated kinase, c-JUN N-terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum 43:2501–2512PubMedGoogle Scholar
  66. Schett G, Zwerina J, Firestein G (2008) The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis. Ann Rheum Dis 67:909–916PubMedGoogle Scholar
  67. Schreiber S, Feagan B, D’haens G, Colombel JF, Geboes K, Yurcov M, Isakov V, Golovenko O, Bernstein CN, Ludwig D, Winter T, Meier U, Yong C, Steffgen J (2006) Oral p38 mitogen-activated protein kinase inhibition with BIRB 796 for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol 4:325–334PubMedGoogle Scholar
  68. Smolen JS, Aletaha D (2011) Monitoring rheumatoid arthritis. Curr Opin Rheumatol 23:252–258PubMedGoogle Scholar
  69. Thalhamer T, Mcgrath MA, Harnett MM (2008) MAPKs and their relevance to arthritis and inflammation. Rheumatology 47:409–414PubMedGoogle Scholar
  70. Tokuda H, Kanno Y, Ishisaki A, Takenaka M, Harada A, Kozawa O (2004) Interleukin (IL)-17 enhances tumor necrosis factor-alpha-stimulated IL-6 synthesis via p38 mitogen-activated protein kinase in osteoblasts. J Cell Biochem 91:1053–1061PubMedGoogle Scholar
  71. Villalvilla A, Gomez R, Roman-Blas JA, Largo R, Herrero-Beaumont G (2014) SDF-1 signaling: a promising target in rheumatic diseases. Expert Opin Ther Targets 18:1077–1087PubMedGoogle Scholar
  72. Walker JK, Selness SR, Devraj RV, Hepperle ME, Naing W, Shieh H, Kurambail R, Yang S, Flynn DL, Benson AG, Messing DM, Dice T, Kim T, Lindmark RJ, Monahan JB, Portanova J (2010) Identification of SD-0006, a potent diaryl pyrazole inhibitor of p38 MAP kinase. Bioorg Med Chem Lett 20:2634–2638PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Philipp Guenthoer
    • 1
  • Kerstin Fuchs
    • 1
  • Gerald Reischl
    • 1
  • Leticia Quintanilla-Martinez
    • 2
  • Irene Gonzalez-Menendez
    • 2
  • Stefan Laufer
    • 3
  • Bernd J. Pichler
    • 1
  • Manfred Kneilling
    • 1
    • 4
    Email author
  1. 1.Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging CenterEberhard Karls University of TuebingenTuebingenGermany
  2. 2.Department of PathologyEberhard Karls University of TuebingenTuebingenGermany
  3. 3.Department of Pharmaceutical and Medicinal ChemistryUniversity of TuebingenTuebingenGermany
  4. 4.Department of DermatologyEberhard Karls University of TuebingenTuebingenGermany

Personalised recommendations