Advertisement

Are peptides a solution for the treatment of hyperactivated JAK3 pathways?

  • Anja Dullius
  • Claudia Monfroni Rocha
  • Stefan Laufer
  • Claucia Fernanda Volken de Souza
  • Márcia Inês GoettertEmail author
Review Article

Abstract

While the inactivation mutations that eliminate JAK3 function lead to the immunological disorders such as severe combined immunodeficiency, activation mutations, causing constitutive JAK3 signaling, are known to trigger various types of cancer or are responsible for autoimmune diseases, such as rheumatoid arthritis, psoriasis, or inflammatory bowel diseases. Treatment of hyperactivated JAK3 is still an obstacle, due to different sensibility of mutation types to conventional drugs and unwanted side effects, because these drugs are not absolutely specific for JAK3, thus inhibiting other members of the JAK family, too. Lack of information, in which way sole inhibition of JAK3 is necessary for elimination of the disease, calls for the development of isoform-specific JAK3 inhibitors. Beside this strategy, up to date peptides are a rising alternative as chemo- or immunotherapeutics, but still sparsely represented in drug development and clinical trials. Beyond a possible direct inhibition function, crossing the cancer cell membrane and interfering in disease-causing pathways or triggering apoptosis, peptides could be used in future as adjunct remedies to potentialize traditional therapy and preserve non-affected cells. To discuss such feasible topics, this review deals with the knowledge about the structure–function of JAK3 and the actual state-of-the-art of isoform-specific inhibitor development, as well as the function of currently approved drugs or those currently being tested in clinical trials. Furthermore, several strategies for the application of peptide-based drugs for cancer therapy and the physicochemical and structural relations to peptide efficacy are discussed, and an overview of peptide sequences, which were qualified for clinical trials, is given.

Keywords

JAK3 inhibition Kinase isoform selectivity Activation mutations Anticancer peptides Peptide-based adjunct drugs Immunotherapeutics 

Notes

Acknowledgements

We would like to acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for scholarships. We would also like to thank the University of Vale do Taquari-UNIVATES and the Secretaria do Desenvolvimento Econômico, Ciência e Tecnologia do Rio Grande do Sul (SDECT) for financial support.

Compliance with ethical standards

Conflict of interest

The author(s) did not declare any conflict of interest.

References

  1. Acero FB, Capobianco CS, Garona J et al (2017) CIGB-300, an anti-CK2 peptide, inhibits angiogenesis, tumor cell invasion and metastasis in lung cancer models. Lung Cancer 107:14–21CrossRefGoogle Scholar
  2. Ah K, Pooja M, Songhee M, Meong H, Shin C (2018) Pro-apoptotic peptides-based cancer therapies: challenges and strategies to enhance therapeutic efficacy. Arch Pharmacal Res 41(6):594–616.  https://doi.org/10.1007/s12272-018-1038-y CrossRefGoogle Scholar
  3. Akrami M, Balalaie S, Hosseinkhani S, Alipour M, Salehi F, Bahador A, Haririan I (2016) Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms. Sci Rep 6:1–12.  https://doi.org/10.1038/srep31030 CrossRefGoogle Scholar
  4. Almi-Sebbane D, Adt I, Degraeve P et al (2018) Casesidin-like anti-bacterial peptides in peptic hydrolysate of camel milk β-casein. Int Dairy J 86:49–56.  https://doi.org/10.1016/j.idairyj.2018.06.016 CrossRefGoogle Scholar
  5. Alves CS, Melo MN, Franquelim HG et al (2010) Escherichia coli cell surface perturbation and disruption induced by antimicrobial peptides, BP100 and pepR. J Biol Chem 285:27536–27544CrossRefPubMedPubMedCentralGoogle Scholar
  6. Amr A, Abo-Ghalia M, Moustafa G et al (2018) Design, synthesis and docking studies of novel macrocyclic pentapeptides as anticancer multi-targeted kinase inhibitors. Molecules 23(10):2416CrossRefPubMedCentralGoogle Scholar
  7. Andersson EI, Pützer S, Yadav B et al (2018) Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling. Leukemia 32(3):774–787.  https://doi.org/10.1038/leu.2017.252 CrossRefPubMedGoogle Scholar
  8. Arias M, Hilchie AL, Haney EF, Bolscher JG, Hyndman ME, Hancock RE, Vogel HJ (2016) Anticancer activities of bovine and human lactoferricin-derived peptides. Biochem Cell Biol 95(1):91–98CrossRefPubMedGoogle Scholar
  9. Assi R, Benton CB, Al Rawi A et al (2017) JAK3 variants in adults with myeloid malignancies and potential for response to JAK3 inhibition. Blood 130:1381Google Scholar
  10. Auzenne EJ, Klostergaard J, Mandal PK et al (2012) A phosphopeptide mimetic prodrug targeting the SH2 domain of Stat3 inhibits tumor growth and angiogenesis. J Exp Ther Oncol 10(2):155PubMedPubMedCentralGoogle Scholar
  11. Ayyash M, Al-Dhaheri AS, Al Mahadin S, Kizhakkayil J, Abushelaibi A (2018) In vitro investigation of anticancer, antihypertensive, antidiabetic, and antioxidant activities of camel milk fermented with camel milk probiotic: a comparative study with fermented bovine milk. J Dairy Sci 101(2):900–911CrossRefPubMedGoogle Scholar
  12. Babon JJ, Lucet IS, Murphy JM, Nicola NA, Varghese LN (2014) The molecular regulation of Janus kinase (JAK) activation. Biochem J 462(1):1–13.  https://doi.org/10.1042/BJ20140712 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Baindara P, Gautam A, Raghava GPS, Korpole S (2017) Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10. Sci Rep 7:1–9.  https://doi.org/10.1038/srep46541 CrossRefGoogle Scholar
  14. Baker KF, Isaacs JD (2018) Novel therapies for immune-mediated inflammatory diseases: what can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis 77(2):175–187.  https://doi.org/10.1136/annrheumdis-2017-211555 CrossRefPubMedGoogle Scholar
  15. Basilicata MG, Pepe G, Sommella E et al (2018) Peptidome profiles and bioactivity elucidation of buffalo-milk dairy products after gastrointestinal digestion. Food Res Int 105:1003–1010CrossRefPubMedGoogle Scholar
  16. Bell E (2009) Inflammation: targeting TNF. Nat Rev Immunol 9(6):390CrossRefGoogle Scholar
  17. Bellanger D, Jacquemin V, Chopin M, Pierron G, Bernard OA, Ghysdael J, Stern MH (2014) Recurrent JAK1 and JAK3 somatic mutations in T-cell prolymphocytic leukemia. Leukemia 28(2):417CrossRefPubMedGoogle Scholar
  18. Benson JM, Peritt D, Scallon BJ, Heavner GA, Shealy DJ, Giles-Komar JM, Mascelli MA (2011) Discovery and mechanism of ustekinumab: a human monoclonal antibody targeting interleukin-12 and interleukin-23 for treatment of immune-mediated disorders. MAbs 3(6):535–545CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bergmann AK, Schneppenheim S, Seifert M et al (2014) Recurrent mutation of JAK3 in T-cell prolymphocytic leukemia. Genes Chromosom Cancer 53(4):309–316CrossRefPubMedGoogle Scholar
  20. Bhide RS, Keon A, Weigelt C et al (2017) Discovery and structure-based design of 4,6-diaminonicotinamides as potent and selective IRAK4 inhibitors. Bioorganic Med Chem Lett 27(21):4908–4913.  https://doi.org/10.1016/j.bmcl.2017.09.029 CrossRefGoogle Scholar
  21. Bhutia SK, Maiti TK (2008) Targeting tumors with peptides from natural sources. Trends Biotechnol 26(4):210–217.  https://doi.org/10.1016/j.tibtech.2008.01.002 CrossRefPubMedGoogle Scholar
  22. Boggon TJ, Li Y, Manley PW, Eck MJ (2005) Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog. Blood 106(3):996–1002CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bouchekioua A, Scourzic L, De Wever O et al (2014) JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma. Leukemia 28(2):338CrossRefPubMedGoogle Scholar
  24. Brasseur R, Divita G (2010) Happy birthday cell penetrating peptides: already 20 years. Biochim Biophys Acta Biomembr 1798(12):2177–2181.  https://doi.org/10.1016/j.bbamem.2010.09.001 CrossRefGoogle Scholar
  25. Buchert M, Burns CJ, Ernst M (2016) Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene 35(8):939CrossRefPubMedGoogle Scholar
  26. Buffery D (2016) Innovation tops current trends in the 2016 oncology drug pipeline. Am Health Drug Benefits 9(4):233–238PubMedPubMedCentralGoogle Scholar
  27. Byrne DP, Foulkes DM, Eyers PA (2017) Pseudokinases: update on their functions and evaluation as new drug targets. Future Med Chem 9(2):245–265CrossRefPubMedGoogle Scholar
  28. Camilio KA, Rekdal Ø, Sveinbjörnsson B (2014) LTX-315 (Oncopore™) a short synthetic anticancer peptide and novel immunotherapeutic agent. Oncoimmunology 3(6):e29181CrossRefPubMedPubMedCentralGoogle Scholar
  29. Chaikuad A, Koch P, Laufer SA, Knapp S (2018) The cysteinome of protein kinases as a target in drug development. Angew Chem Int Ed 57(16):4372–4385.  https://doi.org/10.1002/anie.201707875 CrossRefGoogle Scholar
  30. Chalamaiah M, Yu W, Wu J (2018) Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: a review. Food Chem 245:205–222CrossRefPubMedGoogle Scholar
  31. Chan YS, Cheung RCF, Xia L, Wong JH, Ng TB, Chan WY (2016) Snake venom toxins: toxicity and medicinal applications. Appl Microbiol Biotechnol 100(14):6165–6181.  https://doi.org/10.1007/s00253-016-7610-9 CrossRefPubMedGoogle Scholar
  32. Chen C, Chen Y, Yang C, Zeng P, Xu H, Pan F, Lu JR (2015) High selective performance of designed antibacterial and anticancer peptide amphiphiles. ACS Appl Mater Interfaces 7(31):17346–17355CrossRefPubMedGoogle Scholar
  33. Chen W, Ding H, Feng P, Lin H, Chou KC (2016) iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget 7(13):16895PubMedPubMedCentralGoogle Scholar
  34. Chrencik JE, Patny A, Leung IK et al (2010) Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6. J Mol Biol 400(3):413–433.  https://doi.org/10.1016/j.jmb.2010.05.020 CrossRefPubMedGoogle Scholar
  35. Chuang CH, Greenside PG, Rogers ZN et al (2017) Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis. Nat Med 23(3):291–300.  https://doi.org/10.1038/nm.4285 CrossRefPubMedGoogle Scholar
  36. Cornez I, Yajnanarayana SP, Wolf AM, Wolf D (2017) JAK/STAT disruption induces immuno-deficiency: rationale for the development of JAK inhibitors as immunosuppressive drugs. Mol Cell Endocrinol 451:88–96.  https://doi.org/10.1016/j.mce.2017.01.035 CrossRefPubMedGoogle Scholar
  37. De Vivo M, Cavalli A, Carloni P, Recanatini M (2007) Computational study of the phosphoryl transfer catalyzed by a cyclin-dependent kinase. Chem Eur J 13(30):8437–8444CrossRefPubMedGoogle Scholar
  38. Degryse S, De Bock CE, Cox L et al (2014) JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model. Blood 124(20):3092–3100.  https://doi.org/10.1182/blood-2014-04-566687 CrossRefPubMedGoogle Scholar
  39. Degryse S, De Bock CE, Demeyer S et al (2018a) Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia 32(3):788–800.  https://doi.org/10.1038/leu.2017.276 CrossRefPubMedGoogle Scholar
  40. Degryse S, Bornschein S, Bock De et al (2018b) Mutant JAK3 signaling is increased by loss of wild-type JAK3 or by acquisition of secondary JAK3 mutations in T-ALL. Blood 131(4):421–425.  https://doi.org/10.1182/blood-2017-07-797597 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Duong-Ly KC, Devarajan K, Liang S, Horiuchi KY, Wang Y, Ma H, Peterson JR (2016) Kinase inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutant kinases. Cell Rep 14(4):772–781.  https://doi.org/10.1016/j.celrep.2015.12.080 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Eliassen LT, Berge G, Leknessund A et al (2006) The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo. Int J Cancer 119(3):493–500CrossRefPubMedGoogle Scholar
  43. Ellert-Miklaszewska A, Poleszak K, Kaminska B (2017) Short peptides interfering with signaling pathways as new therapeutic tools for cancer treatment. Future Med Chem 9(2):199–221.  https://doi.org/10.4155/fmc-2016-0240 CrossRefPubMedGoogle Scholar
  44. Elliott NE, Cleveland SM, Grann V, Janik J, Waldmann TA, Davé UP (2011) FERM domain mutations induce gain of function in JAK3 in adult T-cell leukemia/lymphoma. Blood 118:3911–3921.  https://doi.org/10.1182/blood-2010-12-319467 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Eyers PA, Murphy JM (2013) Dawn of the dead: protein pseudokinases signal new adventures in cell biology. Biochem Soc Trans 41(4):969–974.  https://doi.org/10.1042/BST20130115 CrossRefPubMedGoogle Scholar
  46. Fadnes B, Rekdal Ø, Uhlin-Hansen L (2009) The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells. BMC Cancer 9(1):183CrossRefPubMedPubMedCentralGoogle Scholar
  47. Farmer LJ, Ledeboer MW, Hoock T et al (2015) Discovery of VX-509 (decernotinib): a potent and selective Janus kinase 3 inhibitor for the treatment of autoimmune diseases. J Med Chem 58(18):7195–7216CrossRefPubMedGoogle Scholar
  48. Farsinejad S, Gheisary Z, Ebrahimi SS, Alizadeh AM (2015) Mitochondrial targeted peptides for cancer therapy. Tumor Biol 36(8):5715–5725.  https://doi.org/10.1007/s13277-015-3719-1 CrossRefGoogle Scholar
  49. Felício MR, Silva ON, Gonçalves S, Santos NC, Franco OL (2017) Peptides with dual antimicrobial and anticancer activities. Front Chem 5:1–9.  https://doi.org/10.3389/fchem.2017.00005 CrossRefGoogle Scholar
  50. Ferrao R, Lupardus PJ (2017) The Janus Kinase (JAK) FERM and SH2 domains: bringing specificity to JAK-receptor interactions. Front Endocrinol 8:1–11.  https://doi.org/10.3389/fendo.2017.00071 CrossRefGoogle Scholar
  51. Fiorentino M, Gruppioni E, Massari F et al (2017) Wide spetcrum mutational analysis of metastatic renal cell cancer: a retrospective next generation sequencing approach. Oncotarget 8(5):7328CrossRefPubMedGoogle Scholar
  52. Fleischmann RM, Damjanov NS, Kivitz AJ, Legedza A, Hoock T, Kinnman N (2015) A randomized, double-blind, placebo-controlled, twelve-week, dose-ranging study of decernotinib, an oral selective JAK-3 inhibitor, as monotherapy in patients with active rheumatoid arthritis. Arthritis Rheumatol 67(2):334–343.  https://doi.org/10.1002/art.38949 CrossRefPubMedGoogle Scholar
  53. Forster M, Chaikuad A, Bauer SM et al (2016) Selective JAK3 inhibitors with a covalent reversible binding mode targeting a new induced fit binding pocket. Cell Chem Biol 23(11):1335–1340.  https://doi.org/10.1016/j.chembiol.2016.10.008 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Forster M, Gehringer M, Laufer SA (2017) Recent advances in JAK3 inhibition: isoform selectivity by covalent cysteine targeting. Bioorganic Med Chem Lett 27(18):4229–4237CrossRefGoogle Scholar
  55. Forster M, Chaikuad A, Dimitrov T et al (2018) Development, optimization and structure-activity relationships of covalent-reversible JAK3 inhibitors based on a tricyclic imidazo [5, 4-d] pyrrolo [2, 3-b] pyridine scaffold. J Med Chem 61(12):5350–5366CrossRefPubMedGoogle Scholar
  56. Frank DA (2012) Targeting STATs for cancer therapy: “undruggable” no more. JAK-STAT 1(4):261–262.  https://doi.org/10.4161/jkst.22528 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Franke A, McGovern DP, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42(12):1118CrossRefPubMedPubMedCentralGoogle Scholar
  58. Gabernet G, Müller AT, Hiss JA, Schneider G (2016) Membranolytic anticancer peptides. Med Chem Commun 7(12):2232–2245.  https://doi.org/10.1039/C6MD00376A CrossRefGoogle Scholar
  59. Gadina M, Schwartz DM, O’Shea JJ (2016) Editorial: decernotinib: a next-generation jakinib. Arthritis Rheumatol 68(1):31–34.  https://doi.org/10.1002/art.39463 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Gallo RL, Ono M, Povsic T, Page C, Eriksson E, Klagsbrun M, Bernfield M (1994) Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci 91(23):11035–11039CrossRefPubMedGoogle Scholar
  61. Garay H, Espinosa LA, Perera Y et al (2018) Characterization of low-abundance species in the active pharmaceutical ingredient of CIGB-300: a clinical-grade anticancer synthetic peptide. J Pept Sci 24(6):e3081CrossRefPubMedGoogle Scholar
  62. Gaspar D, Veiga AS, Sinthuvanich C, Schneider JP, Castanho MARB (2012) Anticancer peptide SVS-1: efficacy precedes membrane neutralization. Biochemistry 51(32):6263–6265.  https://doi.org/10.1021/bi300836r CrossRefPubMedPubMedCentralGoogle Scholar
  63. Gaspar D, Veiga AS, Castanho MARB (2013) From antimicrobial to anticancer peptides. A review. Front Microbiol 4:1–16.  https://doi.org/10.3389/fmicb.2013.00294 CrossRefGoogle Scholar
  64. Gaspar D, Freire JM, Pacheco TR, Barata JT, Castanho MARB (2015) Apoptotic human neutrophil peptide-1 anti-tumor activity revealed by cellular biomechanics. BBA Mol Cell Res 1853(2):308–316.  https://doi.org/10.1016/j.bbamcr.2014.11.006 CrossRefGoogle Scholar
  65. Gaudio E, Tarantelli C, Barassi C et al (2015) The MEK-inhibitor pimasertib is synergistic with PI3K-delta and BTK inhibitors in lymphoma models. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research, Philadelphia. Cancer Res 75(15):2676.  https://doi.org/10.1158/1538-7445.am2015-2676 CrossRefGoogle Scholar
  66. Ge Y, Wang C, Song S et al (2018) Identification of highly potent BTK and JAK3 dual inhibitors with improved activity for the treatment of B-cell lymphoma. Eur J Med Chem 143:1847–1857.  https://doi.org/10.1016/j.ejmech.2017.10.080 CrossRefPubMedGoogle Scholar
  67. Gehringer M, Laufer SA (2018) Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. J Med Chem.  https://doi.org/10.1021/acs.jmedchem.8b01153 CrossRefPubMedGoogle Scholar
  68. Genovese MC, Van Vollenhoven RF, Pacheco-Tena C, Zhang Y, Kinnman N (2016) VX-509 (Decernotinib), an oral selective JAK-3 inhibitor, in combination with methotrexate in patients with rheumatoid arthritis. Arthritis Rheumatol 68(1):46–55.  https://doi.org/10.1002/art.39473 CrossRefPubMedGoogle Scholar
  69. Ghoreschi K, Laurence A, O’Shea JJ (2009) Janus kinases in immune cell signaling. Immunol Rev 228(1):273–287CrossRefPubMedPubMedCentralGoogle Scholar
  70. Greenplate A, Wang K, Tripathi RM et al (2018) Genomic profiling of T-cell neoplasms reveals frequent JAK1 and JAK3 mutations with clonal evasion from targeted therapies. JCO Precis Oncol 2:1–16CrossRefGoogle Scholar
  71. Groner B, von Manstein V (2017) Jak Stat signaling and cancer: opportunities, benefits and side effects of targeted inhibition. Mol Cell Endocrinol 451:1–14.  https://doi.org/10.1016/j.mce.2017.05.033 CrossRefPubMedGoogle Scholar
  72. Hall T, Emmons TL, Chrencik JE et al (2010) Expression, purification, characterization and crystallization of non-and phosphorylated states of JAK2 and JAK3 kinase domain. Protein Expr Purif 69(1):54–63CrossRefPubMedGoogle Scholar
  73. Haan C, Behrmann I, Haan S (2010) Perspectives for the use of structural information and chemical genetics to develop inhibitors of Janus kinases. J Cell Mol Med 14(3):504–527.  https://doi.org/10.1111/j.1582-4934.2010.01018.x CrossRefPubMedPubMedCentralGoogle Scholar
  74. Haan C, Rolvering C, Raulf F et al (2011) Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. Chem Biol 18(3):314–323.  https://doi.org/10.1016/j.chembiol.2011.01.012 CrossRefPubMedGoogle Scholar
  75. Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O (2018) The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine.  https://doi.org/10.1016/j.cyto.2018.03.041 CrossRefPubMedGoogle Scholar
  76. Hancock REW, Haney EF, Gill EE (2016) The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol 16(5):321–334.  https://doi.org/10.1038/nri.2016.29 CrossRefPubMedGoogle Scholar
  77. Hartmann R, Meisel H (2007) Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 18(2):163–169.  https://doi.org/10.1016/j.copbio.2007.01.013 CrossRefPubMedGoogle Scholar
  78. Haug BE, Camilio KA, Eliassen LT et al (2016) Discovery of a 9-mer cationic peptide (LTX-315) as a potential first in class oncolytic peptide. J Med Chem 59(7):2918–2927CrossRefPubMedGoogle Scholar
  79. He L, Shao M, Wang T, Lan T, Zhang C, Chen L (2018) Design, synthesis, and SAR study of highly potent, selective, irreversible covalent JAK3 inhibitors. Mol Divers 22(2):343–358.  https://doi.org/10.1007/s11030-017-9803-2 CrossRefPubMedGoogle Scholar
  80. Hekmatnejad M, Conwell S, Lok SM, Kutach A, Shaw D, Fang E, Swinney DC (2016) Insights into kinetic mechanism of Janus kinase 3 and its inhibition by tofacitinib. Arch Biochem Biophys 612:22–34.  https://doi.org/10.1016/j.abb.2016.08.012 CrossRefPubMedGoogle Scholar
  81. Hilchie AL, Sharon AJ, Haney EF et al (2016) Mastoparan is a membranolytic anti-cancer peptide that works synergistically with gemcitabine in a mouse model of mammary carcinoma. Biochim Biophys Acta Biomembr 1858(12):3195–3204CrossRefGoogle Scholar
  82. Hodgkinson AJ, Wallace OA, Smolenski G, Prosser CG (2019) Gastric digestion of cow and goat milk: peptides derived from simulated conditions of infant digestion. Food Chem 276:619–625CrossRefPubMedGoogle Scholar
  83. Howell MD, Fitzsimons C, Smith PA (2018) JAK/STAT inhibitors and other small molecule cytokine antagonists for the treatment of allergic disease. Ann Allergy Asthma Immunol 120(4):367–375.  https://doi.org/10.1016/j.anai.2018.02.012 CrossRefPubMedGoogle Scholar
  84. Hsieh CC, Hernández-Ledesma B, Fernández-Tomé S, Weinborn V, Barile D, de Moura Bell JML (2015) Milk proteins, peptides, and oligosaccharides: effects against the 21st century disorders. Biomed Res Int.  https://doi.org/10.1155/2015/146840 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Hu C, Chen X, Huang Y, Chen Y (2018) Synergistic effect of the pro-apoptosis peptide kla-TAT and the cationic anticancer peptide HPRP-A1. Apoptosis 23(2):132–142CrossRefPubMedGoogle Scholar
  86. Huang C, Huang H, Forrest MD, Pan Y, Wu W, Chen H (2014) Inhibition effect of a custom peptide on lung tumors. PLoS One 9(10):1–13.  https://doi.org/10.1371/journal.pone.0109174 CrossRefGoogle Scholar
  87. Huang R, Li J, Kebebe D, Wu Y, Zhang B, Liu Z (2018) Cell penetrating peptides functionalized gambogic acid-nanostructured lipid carrier for cancer treatment. Drug Deliv 25(1):757–765.  https://doi.org/10.1080/10717544.2018.1446474 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Huynh J, Etemadi N, Hollande F, Ernst M, Buchert M (2017) The JAK/STAT3 axis: a comprehensive drug target for solid malignancies. Semin Cancer Biol 45:13–22.  https://doi.org/10.1016/j.semcancer.2017.06.001 CrossRefPubMedGoogle Scholar
  89. Imada K, Leonard WJ (2000) The jak-STAT pathway. Mol Immunol 37(1–2):1–11CrossRefPubMedGoogle Scholar
  90. IQVIA INSTITUT for Human Data Science (2018) Global Oncology Report 2018: a review of 2018 and outlook to 2022. https://www.iqvia.com/institute/reports/global-oncology-trends-2018. Accessed 05 Sept 2018
  91. Ishikawa K, Medina SH, Schneider JP, Klar AJ (2017) Glycan alteration imparts cellular resistance to a membrane-lytic anticancer peptide. Cell Chem Biol 24(2):149–158CrossRefPubMedPubMedCentralGoogle Scholar
  92. Ito M, Yamazaki S, Yamagami K et al (2017) A novel JAK inhibitor, peficitinib, demonstrates potent efficacy in a rat adjuvant-induced arthritis model. J Pharmacol Sci 133(1):25–33.  https://doi.org/10.1016/j.jphs.2016.12.001 CrossRefPubMedGoogle Scholar
  93. Jafari M, Mehrnejad F, Aghdami R, Chaparzadeh N, Razaghi Moghadam Kashani Z, Doustdar F (2017a) Identification of the crucial residues in the early insertion of pardaxin into different phospholipid bilayers. J Chem Inf Model 57(4):929–941.  https://doi.org/10.1021/acs.jcim.6b00693 CrossRefPubMedGoogle Scholar
  94. Jafari M, Mehrnejad F, Doustdar F (2017b) Insight into the interactions, residue snorkeling, and membrane disordering potency of a single antimicrobial peptide into different lipid bilayers. PLoS One 12(11):1–19.  https://doi.org/10.1371/journal.pone.0187216 CrossRefGoogle Scholar
  95. Jian C, Zhang P, Ma J et al (2018) The roles of fatty-acid modification in the activity of the anticancer peptide R-lycosin-I. Mol Pharm 15(10):4612–4620CrossRefPubMedGoogle Scholar
  96. Jiang JK, Ghoreschi K, Deflorian F et al (2008) Examining the chirality, conformation and selective kinase inhibition of 3-((3R,4R)-4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino) piperidin-1-yl)-3-oxopropanenitrile (CP-690,550). J Med Chem 51(24):8012–8018.  https://doi.org/10.1021/jm801142b CrossRefPubMedPubMedCentralGoogle Scholar
  97. Johnson DE, O’Keefe RA, Grandis JR (2018) Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15(4):234–248.  https://doi.org/10.1038/nrclinonc.2018.8 CrossRefPubMedGoogle Scholar
  98. Junior EC, Basso LGM, Altei WF, Marchetto R (2018) Biophysical characterization and antitumor activity of synthetic Pantinin peptides from scorpion’s venom. Biochim Biophys Acta Biomembr 1860(11):2155–2165.  https://doi.org/10.1016/j.bbamem.2018.08.012 CrossRefGoogle Scholar
  99. Kaledin VI, Koval OA, Kuligina EV et al (2018) Antimetastatic effect of liposomal recombinant lactaptin. Bull Exp Biol Med 164(6):762–765.  https://doi.org/10.1007/s10517-018-4075-0 CrossRefPubMedGoogle Scholar
  100. Kempson J, Ovalle D, Guo J et al (2017) Discovery of highly potent, selective, covalent inhibitors of JAK3. Bioorganic Med Chem Lett 27(20):4622–4625.  https://doi.org/10.1016/j.bmcl.2017.09.023 CrossRefGoogle Scholar
  101. Kim MKB, Chong OY (2014) Design, synthesis, and molecular docking study of flavonol derivatives as selective JAK1 inhibitors. Bull Korean Chem Soc 35(8):2581–2584CrossRefGoogle Scholar
  102. Kim WJ, Koo JH, Cho HJ et al (2018) Protein tyrosine phosphatase conjugated with a novel transdermal delivery peptide, astrotactin 1–derived peptide recombinant protein tyrosine phosphatase (AP-rPTP), alleviates both atopic dermatitis–like and psoriasis-like dermatitis. J Allergy Clin Immunol 141(1):137–151CrossRefPubMedGoogle Scholar
  103. Kiyoi H, Yamaji S, Kojima S, Naoe T (2007) JAK3 mutations occur in acute megakaryoblastic leukemia both in Down syndrome children and non-Down syndrome adults. Leukemia 21(3):574CrossRefPubMedGoogle Scholar
  104. Koval O, Sakaeva G, Fomin A et al (2015) Sensitivity of endometrial cancer cells from primary human tumor samples to new potential anticancer peptide lactaptin. J Cancer Res Ther 11(2):345.  https://doi.org/10.4103/0973-1482.157301 CrossRefPubMedGoogle Scholar
  105. Kuo HM, Tseng CC, Chen NF et al (2018) MSP-4, an antimicrobial peptide, induces apoptosis via activation of extrinsic Fas/FasL- and intrinsic mitochondria-mediated pathways in one osteosarcoma cell line. Mar Drugs 16(1):8.  https://doi.org/10.3390/md16010008 CrossRefPubMedCentralGoogle Scholar
  106. Lachowicz JE, Demeule M, Che C et al (2012) Design of new Angiopep-2-anti-EGFR and Angiopep-2-anti-HER2 derivatives with increased blood-brain barrier permeability for treatment of brain tumors. In: Society of Neuro-oncology SNO annual meetingGoogle Scholar
  107. Lazo JS, Sharlow ER (2016) Drugging undruggable molecular cancer targets. Annu Rev Pharmacol Toxicol 56(1):23–40.  https://doi.org/10.1146/annurev-pharmtox-010715-103440 CrossRefPubMedGoogle Scholar
  108. Leite ML, da Cunha NB, Costa FF (2018) Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther 183:160–176CrossRefPubMedGoogle Scholar
  109. Lewies A, Wentzel JF, Jordaan A, Bezuidenhout C, Du Plessis LH (2017) Interactions of the antimicrobial peptide nisin Z with conventional antibiotics and the use of nanostructured lipid carriers to enhance antimicrobial activity. Int J Pharm 526(1–2):244–253CrossRefPubMedGoogle Scholar
  110. Li SD, Ma M, Li H et al (2017) Cancer gene profiling in non-small cell lung cancers reveals activating mutations in JAK2 and JAK3 with therapeutic implications. Genome Med 9(1):1–11.  https://doi.org/10.1186/s13073-017-0478-1 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Liang C, Tian D, Ren X, Ding S, Jia M, Xin M, Thareja S (2018) The development of Bruton’s tyrosine kinase (BTK) inhibitors from 2012 to 2017: a mini-review. Eur J Med Chem 151:315–326CrossRefPubMedGoogle Scholar
  112. Liao W, Lai T, Chen L, Fu J, Sreenivasan ST, Yu Z, Ren J (2016) Synthesis and characterization of a walnut peptides–zinc complex and its antiproliferative activity against human breast carcinoma cells through the induction of apoptosis. J Agric Food Chem 64(7):1509–1519.  https://doi.org/10.1021/acs.jafc.5b04924 CrossRefPubMedGoogle Scholar
  113. Lin TH, Hegen M, Quadros E et al (2010) Selective functional inhibition of JAK-3 is sufficient for efficacy in collagen-induced arthritis in mice. Arthritis Rheumatol 62(8):2283–2293.  https://doi.org/10.1002/art.27536 CrossRefGoogle Scholar
  114. Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ, Jones LH, Gray NS (2013) Developing irreversible inhibitors of the protein kinase cysteinome. Chem Biol 20(2):146–159.  https://doi.org/10.1016/j.chembiol.2012.12.006 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Losdyck E, Hornakova T, Springuel L et al (2015) Distinct acute lymphoblastic leukemia (ALL)-associated Janus Kinase 3 (JAK3) mutants exhibit different cytokine-receptor requirements and JAK inhibitor specificities. J Biol Chem 290(48):29022–29034.  https://doi.org/10.1074/jbc.M115.670224 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Lu Y, Zhang TF, Shi Y (2016) PFR peptide, one of the antimicrobial peptides identified from the derivatives of lactoferrin, induces necrosis in leukemia cells. Sci Rep 6:20826.  https://doi.org/10.1038/srep20823 CrossRefGoogle Scholar
  117. Lupardus PJ, Skiniotis G, Rice AJ, Thomas C, Fischer S, Walz T, Garcia KC (2011) Structural snapshots of full-length Jak1, a transmembrane gp130/IL-6/IL-6Rα cytokine receptor complex, and the receptor-Jak1 holocomplex. Structure 19(1):45–55.  https://doi.org/10.1016/j.str.2010.10.010 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Lupardus PJ, Ultsch M, Wallweber H, Bir Kohli P, Johnson AR, Eigenbrot C (2014) Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. Proc Natl Acad Sci 111(22):8025–8030.  https://doi.org/10.1073/pnas.1401180111 CrossRefPubMedGoogle Scholar
  119. Lynch SM, Devicente J, Hermann JC et al (2013) Strategic use of conformational bias and structure based design to identify potent JAK3 inhibitors with improved selectivity against the JAK family and the kinome. Bioorganic Med Chem Lett 23(9):2793–2800.  https://doi.org/10.1016/j.bmcl.2013.02.012 CrossRefGoogle Scholar
  120. Mahajan S, Hogan JK, Shlyakhter D, Oh L, Salituro FG, Farmer L, Hoock TC (2015) VX-509 (decernotinib) is a potent and selective janus kinase 3 inhibitor that attenuates inflammation in animal models of autoimmune disease. J Pharm Exp Ther 353(2):405–414.  https://doi.org/10.1124/jpet.114.221176 CrossRefGoogle Scholar
  121. Malemud CJ (2013) Suppression of pro-inflammatory cytokines via targeting of STAT-responsive genes. Drug Discov, Hany A. El-Shemy, IntechOpen.  https://doi.org/10.5772/52506
  122. Malemud CJ (2018) The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther Adv Musculoskelet Dis 10(5–6):117–127.  https://doi.org/10.1177/1759720X18776224 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Manavalan B, Basith S, Shin TH, Choi S (2017) MLACP: machine-learning-based peptides prediction of anticancer. Oncotarget 8(44):77121–77136CrossRefPubMedPubMedCentralGoogle Scholar
  124. Mansour SC, De La Fuente-Núñez C, Hancock REW (2015) Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. J Pept Sci 21(5):323–329.  https://doi.org/10.1002/psc.2708 CrossRefPubMedGoogle Scholar
  125. Mansur RB, Lee Y, Subramaniapillai M, Brietzke E, McIntyre RS (2018) Cognitive dysfunction and metabolic comorbidities in mood disorders: a repurposing opportunity for glucagon-like peptide 1 receptor agonists? Neuropharmacology 136(B):335–342CrossRefPubMedGoogle Scholar
  126. Martinez SG, Ross JA, Kirken RA (2016) Transforming mutations of Jak3 (A573V and M511I) show differential sensitivity to selective jak3 inhibitors. Clin Cancer Drugs 3(2):131–137CrossRefPubMedPubMedCentralGoogle Scholar
  127. McNally R, Toms AV, Eck MJ (2016) Crystal structure of the FERM-SH2 module of human Jak2. PLoS One 11(5):1–15.  https://doi.org/10.1371/journal.pone.0156218 CrossRefGoogle Scholar
  128. Meher PK, Sahu TK, Saini V, Rao AR (2017) Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci Rep 7:42362.  https://doi.org/10.1038/srep42362 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Mishra J, Karanki SS, Kumar N (2012) Identification of molecular switch regulating interactions of Janus kinase 3 with cytoskeletal proteins. J Biol Chem.  https://doi.org/10.1074/jbc.C112.363507 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Moodley D, Yoshida H, Mostafavi S et al (2016) Network pharmacology of JAK inhibitors. Proc Natl Acad Sci 113(35):9852–9857CrossRefPubMedGoogle Scholar
  131. Moreno M, Giralt E (2015) Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins 7(4):1126–1150.  https://doi.org/10.3390/toxins7041126 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Mozhi A, Ahmad I, Okeke CI, Li C, Liang XJ (2017) pH-sensitive polymeric micelles for the Co-delivery of proapoptotic peptide and anticancer drug for synergistic cancer therapy. RSC Adv 7(21):12886–12896CrossRefGoogle Scholar
  133. Nakajima Y, Inoue T, Nakai K et al (2015) Synthesis and evaluation of novel 1H-pyrrolo[2,3-b]pyridine-5-carboxamide derivatives as potent and orally efficacious immunomodulators targeting JAK3. Bioorganic Med Chem 23(15):4871–4883.  https://doi.org/10.1016/j.bmc.2015.05.034 CrossRefGoogle Scholar
  134. Nakajima Y, Aoyama N, Takahashi F et al (2016) Design, synthesis, and evaluation of 4,6-diaminonicotinamide derivatives as novel and potent immunomodulators targeting JAK3. Bioorganic Med Chem 24(19):4711–4722.  https://doi.org/10.1016/j.bmc.2016.08.007 CrossRefGoogle Scholar
  135. Nakayamada S, Kubo S, Iwata S, Tanaka Y (2016) Chemical JAK inhibitors for the treatment of rheumatoid arthritis. Expert Opin Pharmacother 17(16):2215–2225.  https://doi.org/10.1080/14656566.2016.1241237 CrossRefPubMedGoogle Scholar
  136. Nguyen VD, Nguyen HHC (2015) Molecular screening of azurin-like anticancer bacteriocins from human gut microflora using bioinformatics. In: Van Do T et al (eds) Advanced computational methods for knowledge engineering. Springer, Cham, pp 219–229CrossRefGoogle Scholar
  137. Nguyen C, Nguyen VD (2016) Discovery of azurin-like anticancer bacteriocins from human gut microbiome through homology modeling and molecular docking against the tumor suppressor p53. Biomed Res Int.  https://doi.org/10.1155/2016/8490482 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Noelle RJ, Nowak EC (2010) Cellular sources and immune functions of interleukin-9. Nat Rev Immunol 10(10):683–687.  https://doi.org/10.1038/nri2848 CrossRefPubMedGoogle Scholar
  139. Nyström L, Malmsten M (2018) Membrane interactions and cell selectivity of amphiphilic anticancer peptides. Curr Opin Colloid Interface Sci 38:1–17.  https://doi.org/10.1016/j.cocis.2018.06.009 CrossRefGoogle Scholar
  140. O’Shea JJ, Husa M, Li D et al (2004) Jak3 and the pathogenesis of severe combined immunodeficiency. Mol Immunol 41(6–7):727–737.  https://doi.org/10.1016/j.molimm.2004.04.014 CrossRefPubMedGoogle Scholar
  141. Ortuso F, Paduano F, Carotenuto A et al (2013) Discovery of PTPRJ agonist peptides that effectively inhibit in vitro cancer cell proliferation and tube formation. ACS Chem Biol 8(7):1497–1506CrossRefPubMedGoogle Scholar
  142. O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A (2015) The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 66:311–328CrossRefPubMedPubMedCentralGoogle Scholar
  143. Oyama M, Van Hung T, Yoda K, He F, Suzuki T (2017) A novel whey tetrapeptide IPAV reduces interleukin-8 production induced by TNF-α in human intestinal Caco-2 cells. J Funct Foods 35:376–383CrossRefGoogle Scholar
  144. Pantic J, Jovanovic I, Radosavljevic G, Arsenijevic N, Conlon J, Lukic M (2017) The potential of frog skin-derived peptides for development into therapeutically-valuable immunomodulatory agents. Molecules 22(12):2071CrossRefPubMedCentralGoogle Scholar
  145. Papageorgiou AC, Wikman LEK (2004) Is JAK3 a new drug target for immunomodulation-based therapies? Trends Pharmacol Sci 25(11):558–562.  https://doi.org/10.1016/j.tips.2004.09.008 CrossRefPubMedGoogle Scholar
  146. Parsley NC, Kirkpatrick CL, Crittenden CM, Rad JG, Hoskin DW, Brodbelt JS, Hicks LM (2018) PepSAVI-MS reveals anticancer and antifungal cycloviolacins in Viola odorata. Phytochemistry 152:61–70.  https://doi.org/10.1016/j.phytochem.2018.04.014 CrossRefPubMedGoogle Scholar
  147. Perea SE, Reyes O, Baladron I et al (2008) CIGB-300, a novel proapoptotic peptide that impairs the CK2 phosphorylation and exhibits anticancer properties both in vitro and in vivo. Mol Cell Biochem 316(1–2):163–167CrossRefPubMedGoogle Scholar
  148. Pierce JG (2017) How cancer cells become resistant to cationic lytic peptides: it’s the sugar! Cell Chem Biol 24(2):121–122CrossRefPubMedGoogle Scholar
  149. Preet S, Bharati S, Panjeta A et al (2015) Effect of nisin and doxorubicin on DMBA-induced skin carcinogenesis—a possible adjunct therapy. Tumor Biol 36(11):8301–8308CrossRefGoogle Scholar
  150. Qamar F, Junejo S, Qureshi S et al (2017) A novel mutation in the JH4 domain of JAK3 causing severe combined immunodeficiency complicated by vertebral osteomyelitis. Clin Immunol 183:198–200.  https://doi.org/10.1016/j.clim.2017.09.007 CrossRefPubMedGoogle Scholar
  151. Rafiq S, Huma N, Rakariyatham K, Hussain I, Gulzar N, Hayat I (2018) Anti-inflammatory and anticancer activities of water-soluble peptide extracts of buffalo and cow milk Cheddar cheeses. Int J Dairy Technol 71(2):432–438CrossRefGoogle Scholar
  152. Rajendran SRCK, Ejike CECC, Gong M, Hannah W, Udenigwe CC (2017) Preclinical evidence on the anticancer properties of food peptides. Protein Pept Lett 24(2):126–136CrossRefPubMedGoogle Scholar
  153. Regina A, Demeule M, Tripathy S et al (2015) ANG4043, a novel brain-penetrant peptide–mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice. Mol Cancer Ther 14(1):129–140CrossRefPubMedGoogle Scholar
  154. Reid KA, Davis CM, Dyer RB, Kindt JT (2018) Binding, folding and insertion of a β-hairpin peptide at a lipid bilayer surface: influence of electrostatics and lipid tail packing. Biochim Biophys Acta Biomembr 1860(3):792–800CrossRefPubMedGoogle Scholar
  155. Richardson A, de Antueno R, Duncan R, Hoskin DW (2009) Intracellular delivery of bovine lactoferricin’s antimicrobial core (RRWQWR) kills T-leukemia cells. Biochem Biophys Res Commun 388(4):736–741CrossRefPubMedGoogle Scholar
  156. Riera L, Lasorsa E, Bonello L et al (2011) Description of a novel Janus kinase 3 P132A mutation in acute megakaryoblastic leukemia and demonstration of previously reported Janus kinase 3 mutations in normal subjects. Leuk Lymphoma 52(9):1742–1750CrossRefPubMedGoogle Scholar
  157. Romano V, De Beer TAP, Schwede T (2017) A computational protocol to evaluate the effects of protein mutants in the kinase gatekeeper position on the binding of ATP substrate analogues. BMC Res Notes 10(1):1–12.  https://doi.org/10.1186/s13104-017-2428-9 CrossRefGoogle Scholar
  158. Rothan HA, Ambikabothy J, Ramasamy TS et al (2019) A preliminary study in search of potential peptide candidates for a combinational therapy with cancer chemotherapy drug. Int J Pept Res Ther 25:115.  https://doi.org/10.1007/s10989-017-9646-9 CrossRefGoogle Scholar
  159. Sader HS, Fedler KA, Rennie RP, Stevens S, Jones RN (2004) Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob Agents Chemother 48(8):3112–3118CrossRefPubMedPubMedCentralGoogle Scholar
  160. Sah BNP, Vasiljevic T, Mckechnie S, Donkor ON (2015) Identification of anticancer peptides from bovine milk proteins and their potential roles in management of cancer: a critical review. Compr Rev Food Sci Food Saf 14(2):123–138CrossRefGoogle Scholar
  161. Saharinen P, Silvennoinen O (2002) The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem 277(49):47954–47963.  https://doi.org/10.1074/jbc.M205156200 CrossRefPubMedGoogle Scholar
  162. Sakuma S, Nishigaki F, Magari K, Ogawa T, Miyata S, Ohkubo Y, Goto T (2001) FK506 is superior to methotrexate in therapeutic effects on advanced stage of rat adjuvant-induced arthritis. Inflamm Res 50(10):509–514CrossRefPubMedGoogle Scholar
  163. Sandler U, Devary O, Braitbard O, Ohana J, Kass G, Rubinstein AM, Friedmann ZY, Devary Y (2010) NEROFE™-A novel human hormone-peptide with anti-cancer activity. J Exp Ther Oncol 8:327–339PubMedGoogle Scholar
  164. Sato T, Toki T, Kanezaki R et al (2008) Functional analysis of JAK3 mutations in transient myeloproliferative disorder and acute megakaryoblastic leukaemia accompanying Down syndrome. Br J Haematol 141(5):681–688CrossRefPubMedGoogle Scholar
  165. Schwartz DM, Bonelli M, Gadina M, O’shea JJ (2016) Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol 12(1):25CrossRefPubMedGoogle Scholar
  166. Sekiya Y, Sakashita S, Shimizu K, Usui K, Kawano R (2018) Channel current analysis estimates the pore-formation and the penetration of transmembrane peptides. Analyst 143(15):3540–3543.  https://doi.org/10.1039/c8an00243f CrossRefPubMedGoogle Scholar
  167. Shariatikia M, Behbahani M, Mohabatkar H (2017) Anticancer activity of cow, sheep, goat, mare, donkey and camel milks and their caseins and whey proteins and in silico comparison of the caseins. Mol Biol Res Commun 6(2):57–64PubMedPubMedCentralGoogle Scholar
  168. Sic H, Speletas M, Cornacchione V et al (2017) An activating Janus Kinase-3 mutation is associated with cytotoxic T lymphocyte antigen-4-dependent immune Dysregulation syndrome. Front Immunol 8:1824CrossRefPubMedPubMedCentralGoogle Scholar
  169. Sigurdsson S, Nordmark G, Göring HH et al (2005) Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 76(3):528–537CrossRefPubMedPubMedCentralGoogle Scholar
  170. Sim SH, Kim S, Kim TM et al (2017) Novel JAK3-activating mutations in extranodal NK/T-cell lymphoma, nasal type. Am J Pathol 187(5):980–986.  https://doi.org/10.1016/j.ajpath.2017.01.004 CrossRefPubMedGoogle Scholar
  171. Smith IJ, Roberts B, Beharry A et al (2016) Janus kinase inhibition prevents cancer- and myocardial infarction-mediated diaphragm muscle weakness in mice. Am J Physiol Regul Integr Comp Physiol 310(8):R707–R710.  https://doi.org/10.1152/ajpregu.00550.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Smithgall TE (1995) SH2 and SH3 domains: potential targets for anti-cancer drug design. J Pharmacol Toxicol Methods 34(3):125–132CrossRefPubMedGoogle Scholar
  173. Sopjani M, Thaçi S, Krasniqi B, Selmonaj M, Rinnerthaler M, Dërmaku-Sopjani M (2017) Regulation of ion channels, cellular carriers and Na(+)/K(+)/ATPase by Janus kinase 3. Curr Med Chem 24(21):2251–2260.  https://doi.org/10.2174/0929867324666170203122625 CrossRefPubMedGoogle Scholar
  174. Springuel L, Hornakova T, Losdyck E et al (2014) Cooperating JAK1 and JAK3 mutants increase resistance to JAK inhibitors. Blood 124(26):3924–3931.  https://doi.org/10.1182/blood-2014-05-576652 CrossRefPubMedGoogle Scholar
  175. Stein MK, Morris LK, Martin MG, Morris LK, Martin MG (2018) JAK pseudokinase domain variants highlight nRTK VUSs identified with next-generation sequencing in solid tumor patients. Pathol Oncol Res.  https://doi.org/10.1007/s12253-018-0443-3 CrossRefPubMedGoogle Scholar
  176. Stover DG, Gil CR, Alcazar D et al (2018) Phase II study of ruxolitinib, a selective JAK1/2 inhibitor, in patients with metastatic triple-negative breast cancer. NPJ Breast Cancer.  https://doi.org/10.1038/s41523-018-0060-z CrossRefPubMedPubMedCentralGoogle Scholar
  177. Swithenbank L, Morgan C (2017) The role of antimicrobial peptides in lung cancer therapy. J Antimicrob Agents.  https://doi.org/10.4172/2472-1212.1000134 CrossRefGoogle Scholar
  178. Taylor PC, Abdul Azeez M, Kiriakidis S (2017) Filgotinib for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs 26(10):1181–1187CrossRefPubMedGoogle Scholar
  179. Telliez JB, Dowty ME, Wang L et al (2016) Discovery of a JAK3-selective inhibitor: functional differentiation of JAK3-selective inhibition over pan-JAK or JAK1-selective inhibition. ACS Chem Biol 11(12):3442–3451.  https://doi.org/10.1021/acschembio.6b00677 CrossRefPubMedGoogle Scholar
  180. Thoma G, Nuninger F, Falchetto R, Hermes E, Tavares GA, Vangrevelinghe E, Zerwes HG (2011) Identification of a potent janus kinase 3 inhibitor with high selectivity within the janus kinase family. J Med Chem 54(1):284–288.  https://doi.org/10.1021/jm101157q CrossRefPubMedGoogle Scholar
  181. Thorarensen A, Dowty ME, Banker ME et al (2017) Design of a Janus kinase 3 (JAK3) specific inhibitor 1-((2 S, 5 R)-5-((7 H-Pyrrolo [2, 3-d] pyrimidin-4-yl) amino)-2-methylpiperidin-1-yl) prop-2-en-1-one (PF-06651600) allowing for the interrogation of JAK3 signaling in humans. J Med Chem 60(5):1971–1993CrossRefPubMedGoogle Scholar
  182. Toms AV, Deshpande A, McNally R et al (2013) Structure of a pseudokinase-domain switch that controls oncogenic activation of Jak kinases. Nat Struct Mol Biol 20(10):1221–1224.  https://doi.org/10.1038/nsmb.2673 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Tonk M, Vilcinskas A, Rahnamaeian M (2016) Insect antimicrobial peptides: potential tools for the prevention of skin cancer. Appl Microbiol Biotechnol 100(17):7397–7405.  https://doi.org/10.1007/s00253-016-7718-y CrossRefPubMedPubMedCentralGoogle Scholar
  184. Tyagi A, Tuknait A, Anand P et al (2015) CancerPPD: a database of anticancer peptides and proteins. Nucleic Acids Res 43(D1):D837–D843.  https://doi.org/10.1093/nar/gku892 CrossRefPubMedGoogle Scholar
  185. Uhlig T, Kyprianou T, Martinelli FG et al (2014) The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteom 4:58–69.  https://doi.org/10.1016/j.euprot.2014.05.003 CrossRefGoogle Scholar
  186. Ungureanu D, Wu J, Pekkala T et al (2011) The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol 18(9):971–976.  https://doi.org/10.1038/nsmb.2099 CrossRefPubMedPubMedCentralGoogle Scholar
  187. Upadhyaya P, Qian Z, Selner NG, Clippinger SR, Wu Z, Briesewitz R, Pei D (2015) Inhibition of Ras signaling by blocking Ras-effector interactions with cyclic peptides. Angew Chem Int Ed 54(26):7602–7606.  https://doi.org/10.1002/anie.201502763 CrossRefGoogle Scholar
  188. Van Rompaey L, Galien R, van der Aar EM et al (2013) Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases. J Immunol 191(7):3568–3577.  https://doi.org/10.4049/jimmunol.1201348 CrossRefPubMedGoogle Scholar
  189. Vanhoutte F, Mazur M, Voloshyn O et al (2017) Efficacy, safety, pharmacokinetics, and pharmacodynamics of filgotinib, a selective JAK-1 inhibitor, after short-term treatment of rheumatoid arthritis: results of two randomized phase IIa trials. Arthritis Rheumatolatol 69(10):1949–1959CrossRefGoogle Scholar
  190. Vitali A (2015) Proline-rich peptides: multifunctional bioactive molecules as new potential therapeutic drugs. Curr Protein Pept Sci 16(2):147–162.  https://doi.org/10.2174/1389203716666150102110817 CrossRefPubMedGoogle Scholar
  191. Waldmann TA (2017) JAK/STAT pathway directed therapy of T-cell leukemia/lymphoma: inspired by functional and structural genomics. Mol Cell Endocrinol 451:66–70.  https://doi.org/10.1016/j.mce.2017.02.019 CrossRefPubMedPubMedCentralGoogle Scholar
  192. Wallweber HJA, Tam C, Franke Y, Starovasnik MA, Lupardus PJ (2014) Structural basis of recognition of interferon-α receptor by tyrosine kinase 2. Nat Struct Mol Biol 21(5):443–448.  https://doi.org/10.1038/nsmb.2807 CrossRefPubMedPubMedCentralGoogle Scholar
  193. Wang R, Griffin PR, Small EC, Thompson JE (2003) Mechanism of Janus kinase 3-catalyzed phosphorylation of a Janus kinase 1 activation loop peptide. Arch Biochem Biophys 410(1):7–15.  https://doi.org/10.1016/S0003-9861(02)00637-9 CrossRefPubMedGoogle Scholar
  194. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44(D1):D1087–D1093.  https://doi.org/10.1093/nar/gkv1278 CrossRefPubMedGoogle Scholar
  195. Wang C, Dong S, Zhang L et al (2017) Cell surface binding, uptaking and anticancer activity of L-K6, a lysine/leucine-rich peptide, on human breast cancer MCF-7 cells. Sci Rep 7(1):1–13.  https://doi.org/10.1038/s41598-017-08963-2 CrossRefPubMedPubMedCentralGoogle Scholar
  196. Wei L, Zhou C, Chen H, Song J, Su R (2018) ACPred-FL: a sequence-based predictor based on effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics 34(23):4007–4016PubMedGoogle Scholar
  197. Winthrop KL (2017) The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol 13(4):234CrossRefPubMedGoogle Scholar
  198. Wu D, Gao Y, Qi Y, Chen L, Ma Y, Li Y (2014) Peptide-based cancer therapy: opportunity and challenge. Cancer Lett 351(1):13–22.  https://doi.org/10.1016/j.canlet.2014.05.002 CrossRefPubMedGoogle Scholar
  199. Yamashita Y, Yuan J, Suetake I et al (2010) Array-based genomic resequencing of human leukemia. Oncogene 29(25):3723CrossRefPubMedGoogle Scholar
  200. Yan J, Zhang B, Hosseinzadeh Z, Lang F (2016) Down-regulation of store-operated Ca2+ entry and Na+ Ca2+ exchange in MCF-7 breast cancer cells by pharmacological JAK3 inhibition. Cell Physiol Biochem 38(4):1643–1651.  https://doi.org/10.1159/000443104 CrossRefPubMedGoogle Scholar
  201. Yang SM, Malaviya R, Wilson LJ et al (2007) Simplified staurosporine analogs as potent JAK3 inhibitors. Bioorganic Med Chem Lett 17(2):326–331.  https://doi.org/10.1016/j.bmcl.2006.10.062 CrossRefGoogle Scholar
  202. Yasukawa H (1999) The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J 18(5):1309–1320.  https://doi.org/10.1093/emboj/18.5.1309 CrossRefPubMedPubMedCentralGoogle Scholar
  203. Zambrowicz A, Timmer M, Polanowski A, Lubec G, Trziszka T (2013) Manufacturing of peptides exhibiting biological activity. Amino Acids 44(2):315–320.  https://doi.org/10.1007/s00726-012-1379-7 CrossRefPubMedGoogle Scholar
  204. Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9(1):28–39.  https://doi.org/10.1038/nrc2559 CrossRefPubMedGoogle Scholar
  205. Zhang Y, Li C, Xue W, Zhang M, Li Z (2018) Frequent mutations in natural killer/T cell lymphoma. Cell Physiol Biochem 49(1):1–16.  https://doi.org/10.1159/000492835 CrossRefPubMedGoogle Scholar
  206. Zhao J, Huang Y, Liu D, Chen Y (2014) Two hits are better than one: synergistic anticancer activity of α-helical peptides and doxorubicin/epirubicin. Oncotarget 6(3):1769–1778.  https://doi.org/10.18632/oncotarget.2754 CrossRefPubMedCentralGoogle Scholar
  207. Zhou YJ, Chen M, Cusack NA et al (2001) Unexpected effects of FERM domain mutations on catalytic activity of Jak3: structural implication for Janus kinases. Mol Cell 8(5):959–969.  https://doi.org/10.1016/S1097-2765(01)00398-7 CrossRefPubMedGoogle Scholar
  208. Zhou YJ, Hanson EP, Chen Y et al (1997) Distinct tyrosine phosphorylation sites in JAK3 kinase domain positively and negatively regulate its enzymatic activity. Proc Nat Acad Sci 94(25):13850–13855CrossRefPubMedGoogle Scholar
  209. Zhou J, Zhao M, Tang Y et al (2016) The milk-derived fusion peptide, ACFP, suppresses the growth of primary human ovarian cancer cells by regulating apoptotic gene expression and signaling pathways. BMC Cancer 16(1):246CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Food Biotechnology, Post-Graduation Program in BiotechnologyUniversity of Vale do Taquari-UNIVATESLajeadoBrazil
  2. 2.Cell Culture Laboratory, Post-Graduation Program in BiotechnologyUniversity of Vale do Taquari-UNIVATESLajeadoBrazil
  3. 3.Department of Pharmaceutical Chemistry, Institute of Pharmaceutical SciencesEberhard Karls Universität TübingenTübingenGermany

Personalised recommendations