International Applied Mechanics

, Volume 55, Issue 6, pp 681–699 | Cite as

Nonlinearity of Elastic Deformations and Moderateness of Strains as a Factor Explaining the Auxeticity of Materials*

  • J. J. RushchitskyEmail author

A theoretical attempt is proposed to explain the auxeticity of elastic materials by use of nonlinear models of elastic deformations for a wide range of strain values up to moderate level. Analytical expressions are obtained that correspond to three kinds of universal deformations (simple shear, uniaxial tension, omniaxial tension) within the framework of three models well-known in the nonlinear theory of elasticity: two-constant Neo-Hookean model, three-constant Mooney–Rivlin model, five-constant Murnaghan model. The most interesting novelty is that a sample of elastic material is deformed as a conventional material at small strains and as an auxetic at moderate strains.


àuxeticity universal deformation moderate strain nonlinear hyperelastic model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Alderson and K. L. Alderson, “Auxetic materials,” Int. Mech. E., J. Aerosp. Eng., 221, No. 4, 565–575 2007.MathSciNetGoogle Scholar
  2. 2.
    An introduction to auxetic materials: an interview with Professor Andrew Alderson, AZoMaterials, August 29 (2015).Google Scholar
  3. 3.
    C. Anurag, C. K. Anvesh, and S. Katam, “Auxetic materials,” Int. J. Research in Appl. Sci. Eng. Technol., 3, No. 4, 1176–1183 (2015).Google Scholar
  4. 4.
    S. Babaee, J. Shim, J. C. Weaver, E. R. Chen, N. Patel, and K. Bertoldi, “3D soft metamaterials with negative Poisson’s ratio,” Advanced Materials, 25, No. 36, 5044–5049 (2013).CrossRefGoogle Scholar
  5. 5.
    L. Cabras and M. Brun, “Auxetic two-dimensional lattices with Poisson’s ratio arbitrarily close to –1,” Proc. Roy. Soc. London A, 470, 0538, 1–23 (2014).MathSciNetzbMATHGoogle Scholar
  6. 6.
    V. H. Carneiro, J. Meireles, and H. Puga, “Auxetic materials – a review,” Materials Science – Poland, 31, No. 4, 561–571 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    C. Cattani and J. J. Rushchitsky, Wavelet and Wave Analysis as Applied to Materials with Micro or Nano-Structures, World Scientific Publishing, Singapore–London (2007).CrossRefGoogle Scholar
  8. 8.
    R. M. Christensen, Mechanics of Composite Materials, J. Wiley and Sons, New York (1979).Google Scholar
  9. 9.
    J. Dagdelen, J. Montoya, M. de Jong, and K. Persson, “Computational prediction of new auxetic materials,” Nature. Communications, 323, 1–8 (2017).Google Scholar
  10. 10.
    K. K. Dudek, D. Attard, R. Caruana-Gauci, K. W. Wojciechowski, and J. N. Grima, “Unimode metamaterials exhibiting negative linear compressibility and negative thermal expansion,” Smart Materials and Structures, 25, No. 2, 025009 (2016).CrossRefGoogle Scholar
  11. 11.
    Encyclopedia of Smart Materials, in 2 vols, John Wiley and Sons, New York (2002).Google Scholar
  12. 12.
    K. E. Evans, “Auxetic polymers: a new range of materials,” Endeavour, 15, 170–174 (1991).CrossRefGoogle Scholar
  13. 13.
    S. Flügge, Encyclopedia of Physics, Vol. VIa/I. Mechanics of Solids, Springer-Verlag, Berlin (1973).Google Scholar
  14. 14.
    V. Hauk (ed), Structural and Residual Stress Analysis, Elsevier Science B.V., Amsterdam (1997) (evariant 2006).Google Scholar
  15. 15.
    R. B. Hetnarski and J. Ignaczak, The Mathematical Theory of Elasticity, CRC Press, Boca Raton (2011).zbMATHGoogle Scholar
  16. 16.
    G. A. Holzapfel, Nonlinear Solid Mechanics. A Continuum Approach for Engineering, Wiley, Chichester (2006).Google Scholar
  17. 17.
    L. J. Gibson, M. F. Ashby, G. S. Schayer, and C. I. Robertson, “The mechanics of two-dimensional cellular materials,” Proc. Roy. Soc. London A, 382, 25–42 (1982).ADSCrossRefGoogle Scholar
  18. 18.
    L. J. Gibson and M. F. Ashby, “The mechanics of three-dimensional cellular materials,” Proc. Roy. Soc. London A, 382, 43–59 (1982).ADSCrossRefGoogle Scholar
  19. 19.
    G. N. Greaves, “Poisson’s ratio over two centuries: challenging hypotheses,” Notes and Records of Roy. Soc., 67, No. 1, 37–58 (2013).CrossRefGoogle Scholar
  20. 20.
    J. N. Grima, “Auxetic metamaterials,” in: European Summer Campus, Strasbourg, France (2010), pp. 1–13,
  21. 21.
    I. A. Guz, A. A. Rodger, J. J. Rushchitsky, and A. N. Guz, “Developing the mechanical models for nanomaterials,” Phil. Trans. Roy. Soc. A: Math., Phys. Eng. Sci., 365 (1860), 3233–3239 (2008).Google Scholar
  22. 22.
    A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], in 2 vols, V. 1. General Problems, V. 2. Regularities of Propagation, Naukova Dumka, Kyiv (1986).Google Scholar
  23. 23.
    V. G. Karnaukhov, I. F. Kirichok, and V. I. Kozlov, “Thermomechanics of inelastic thin-walled structural members with piezoelectric sensors and actuators under harmonic loading (review),” Int. Appl. Mech., 53, No. 1, 6–58 (2017).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    R. S. Lakes, “Foam structures with a negative Poisson’s ratio,” Science, 235, 1038–1040 (1987).ADSCrossRefGoogle Scholar
  25. 25.
    Y. P. Liu and H. Hu, “A review on auxetic structures and polymeric materials,” Scientific Research and Essays, 5, No. 10, 1052–1063 (2010),
  26. 26.
    T. C. Lim, Auxetic Materials and Structures, Springer, Berlin (2015).CrossRefGoogle Scholar
  27. 27.
    A. E. H. Love, The Mathematical Theory of Elasticity, Dover Publications, New York (1944).zbMATHGoogle Scholar
  28. 28.
    A. I. Lurie, Theory of Elasticity, Ser.: Foundations of Engineering Mechanics, Springer, Berlin (2005).CrossRefGoogle Scholar
  29. 29.
    Materials. Special issue “Auxetics 2017–2018.”Google Scholar
  30. 30.
    F. Capolino (ed), Metamaterials Handbook – Two Volume Slipcase Set, CRC Press, Boca Raton (2009).Google Scholar
  31. 31.
    M. Mooney, “A theory of large elastic deformations,” J. Appl. Phys., 11, No. 9, 582–592 (1940).ADSCrossRefGoogle Scholar
  32. 32.
    F. D. Murnaghan, Finite Deformation in an Elastic Solid, John Wiley, New York (1951, 1967).Google Scholar
  33. 33.
    R. W. Ogden, Nonlinear Elastic Deformations, Dover, New York (1997).zbMATHGoogle Scholar
  34. 34.
    Y. Pravoto, “Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio,” Comput. Mater. Sci., 58, 140153 (2012).CrossRefGoogle Scholar
  35. 35.
    R. S. Rivlin, “Large elastic deformations of isotropic materials. IV. Further development of general theory,” Phil. Trans. Roy. Sci. London, Ser. A. Math. Phys. Sci., 241 (835), 379–397 (1948).Google Scholar
  36. 36.
    J. J. Rushchitsky, “On universal deformations in an analysis of the nonlinear Signorini theory for hyperelastic medium,” Int. Appl. Mech., 43, No. 12, 1347–1350 (2007).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    J. J. Rushchitsky, Nonlinear Elastic Waves in Materials, Ser.: Foundations of Engineering Mechanics, Springer, Heidelberg (2014).CrossRefGoogle Scholar
  38. 38.
    J. J. Rushchitsky, “On the constraints for displacement gradients in elastic materials,” Int. Appl. Mech., 52, No. 3, 339–352 (2016).MathSciNetCrossRefGoogle Scholar
  39. 39.
    G. Saccomandi and J. Ciambella, “A continuum hyperelastic model for auxetic materials,” Proc. Roy. Soc. A, 470, 1–14 (2014).MathSciNetzbMATHGoogle Scholar
  40. 40.
    F. Scarpa, Auxetics: From Foams to Composites and Beyond (presentation to Sheffield May) (2011),
  41. 41.
    F. Scarpa, P. Pastorino, A. Garelli, S. Patsias, and M. Ruzzene, “Auxetic compliant flexible PU foams: static and dynamic properties,” Physica Status Solidi B, 242, No. 3, 681–694 (2005).ADSCrossRefGoogle Scholar
  42. 42.
    C. Truesdell, A First Course in Rational Continuum Mechanics, The John Hopkins University, Baltimore (1972); Academic Press, New York (1991).Google Scholar
  43. 43.
    M. Uzun, “Mechanical properties of auxetic and conventional polyprophylene random short fibre rein – forced composites,” Fibres and Textiles in Eastern Europe, 20, No. 5(94), 70–74 (2012).Google Scholar
  44. 44.
    K. W. Wojciechowski, “Constant thermodynamic tension Monte–Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexameters,” Molecular Physics, 61, 1247–1258 (1987).ADSCrossRefGoogle Scholar
  45. 45.
    Y. T. Yao, M. Uzun, and I. Patel, “Working of auxetic nanomaterials,” J. Achiev. Mater. Manufact. Eng., 49, No. 2, 585–594 (2011).Google Scholar
  46. 46.
    Ya. A. Zhuk and I. A. Guz, “Active damping of the forced vibration of a hinged beam with piezoelectric layer, geometrical and physical nonlinearities taken into account,” Int. App. Mech., 45, No. 1, 94–108 (2009).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations