Advertisement

Bending Vibrations of Bimorph Piezoceramic Plates of Noncanonical Shape

  • P. Shakeri MobarakehEmail author
  • V. T. Grinchenko
  • B. Soltannia
Article
  • 5 Downloads

The superposition method is used to develop an effective method for analytical solution of the problem of the harmonic bending vibrations of parallelogram-shaped bimorph piezoceramic plates. The reduction of infinite series allows deriving a finite-dimensional system of algebraic equations by satisfying given boundary conditions by minimizing the standard deviation and using the collocation method.

Keywords

bending vibrations piezoceramic plates of noncanonical shape superposition method collocation method standard deviation reduction method natural frequency spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ya. Bornyak and B. Soltannia, “Projection method of solving the problem of the natural vibrations of a clamped plate,” Akust. Visn., 12, No. 1, 11–18 (2009).Google Scholar
  2. 2.
    V. T. Grinchenko and V. V. Meleshko, Harmonic Vibrations and Waves in Elastic Bodies [in Russian], Naukova Dumka, Kyiv (1981).zbMATHGoogle Scholar
  3. 3.
    O. Zienkiewicz and K. Morgan, Finite Elements and Approximation, Dovers Publications, Dover (2006).zbMATHGoogle Scholar
  4. 4.
    V. V. Meleshko and S. O. Papkov, “Bending vibrations of simply supported elastic rectangular plates: from Khladni (1809) and Ritz (1909) to today,” Akust. Visn., 12, No. 4, 34–51 (2009).Google Scholar
  5. 5.
    V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, Electroelasticity, Vol. 5 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kyiv (1989).Google Scholar
  6. 6.
    W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics, Van Nostrand, New York (1950).Google Scholar
  7. 7.
    S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York (1959).zbMATHGoogle Scholar
  8. 8.
    P. Shakeri Mobarakeh, V. T. Grinchenko, V. V. Popov, B. Soltannia, and G. M. Zrazhevsky, “Modern methods for numerical-analytical solution of boundary-value problems in noncanonical domains,” Mat. Metody Fiz.-Mekh. Polya, 60, No. 4, 75–89 (2017).Google Scholar
  9. 9.
    P. Shakeri Mobarakeh and G. M. Zrazhevs’ky, “Galerkin’s algorithm in the method of partial domains of solving boundary problems,” Visn. Kyiv. Univ., Ser. Fiz. Mat. Nauky, No. 1, 75–82 (2014).Google Scholar
  10. 10.
    D. J. Gorman, Vibration Analysis of Plates by the Superposition Method, World Scientific, London (1999).CrossRefzbMATHGoogle Scholar
  11. 11.
    M. Hajikhani, B. Soltannia, A. R. Oskouei, and M. Ahmadi, “Monitoring of delamination in composites by use of acoustic emission,” in: Proc. 3rd Condition Monitoring &Fault Diagnosis Conf., Tehran, Iran (2009).Google Scholar
  12. 12.
    A. W. Leissa and M. S. Qatu, Vibrations of Continuous Systems, McGraw-Hill, New York (2011).Google Scholar
  13. 13.
    S. O. Papkov and J. R. Banerjee, “A new method for free vibration and buckling analysis of rectangular orthotropic plates,” J. Sound Vibr., 339, 342–358 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    P. Shakeri Mobarakeh and V. T. Grinchenko, “Construction method of analytical solutions to the mathematical physics boundary problems for non-canonical domains,” Reports of Mat. Physics, 75, No. 3, 417–434 (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    P. Shakeri Mobarakeh, V. T. Grinchenko, H. Ahmadi, and B. Soltannia, “The amplitude-frequency characteristics of piezoceramic plates depending on the shape of the boundaries,” in: Proc. 7th Int. Conf. on Acoustics and Vibration (ISAV2017), Tehran, Iran (2017).Google Scholar
  16. 16.
    P. Shakeri Mobarakeh, V. T. Grinchenko, S. Iranpour Mobarakeh, and B. Soltannia, “Influence of acoustic screen on directional characteristics of cylindrical radiator,” in: Proc. 5th Int. Conf. on Acoustics and Vibration (ISAV2015), Tehran, Iran (2015).Google Scholar
  17. 17.
    P. Shakeri Mobarakeh, V. T. Grinchenko, and B. Soltannia, “Directional characteristics of cylindrical radiators with an arc-shaped acoustic screen,” J. Eng. Math., 103, No. 1, 97–110 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    P. Shakeri Mobarakeh, V. T. Grinchenko, and B. Soltannia, “Effect of boundary form disturbances on the frequency response of planar vibrations of piezoceramic plates. Analytical solution,” Strength of Materials, 50, No. 3, 376–386 (2018).CrossRefGoogle Scholar
  19. 19.
    P. Shakeri Mobarakeh, V. T. Grinchenko, and G. M. Zrazhevsky, “A numerical-analytical method for solving boundary-value problem of elliptical type for a parallelogram shaped plate,” Bulletin of T. Shevchenko Nat. Univ. of Kyiv, Ser.: Phys.-Math., Special issue, 297–304 (2015).Google Scholar
  20. 20.
    E. Ventsel and T. Krauthammer, Thin Plates and Shells: Theory, Analysis, and Applications, Marcel Dekker, New York (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. Shakeri Mobarakeh
    • 1
    Email author
  • V. T. Grinchenko
    • 2
  • B. Soltannia
    • 3
  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.Institute of HydromechanicsNational Academy of Science of UkraineKyivUkraine
  3. 3.University of AlbertaEdmontonCanada

Personalised recommendations