International Applied Mechanics

, Volume 54, Issue 1, pp 104–119

# Geometric Nonlinear Vibration Analysis for Pretensioned Rectangular Orthotropic Membrane

Article

The geometric nonlinear vibrations of pretensioned orthotropic membrane with four edges fixed, which is commonly applied in building membrane structure, are studied. The nonlinear partial differential governing equations are derived by von Kármán’s large deflection theory and D’Alembert’s principle. Because of the strong nonlinearity of governing equations, the homotopy perturbation method (HPM) to solve them is applied. The approximate analytical solution of the vibration frequency and displacement function is obtained. In the computational example, the frequency, vibration mode and displacement as well as the time curve of each feature point are analyzed. It is proved that HPM is an effective, simple and high-precision method to solve the geometric nonlinear vibration problem of membrane structures. These results provide some valuable computational basis for the vibration control and dynamic design of building and other analogous membrane structures.

## Keywords

nonlinear vibration orthotropic membrane perturbation method

## References

1. 1.
C. G. Wang, Y. L. Li, X.W. Du, et al, “Simulation analysis of vibration characteristics of wrinkled membrane space structure,” Int. J. Space Struct., 22, No. 4, 239–246 (2007).
2. 2.
C. Jenkins and U. A. Korde, “Membrane vibration experiments: An historical review and recent results,” J. Sound Vibr., 295, No. 3–5, 602–613 (2006).
3. 3.
Y. L. Li, M. Y. Lu, H. F. Tan, et al, “A study on wrinkling characteristics and dynamic mechanical behavior of membrane,” Acta Mechanica Sinica/Lixue Xuebao, 28, No. 1, 201–210 (2012).
4. 4.
S. W. Kang and J. M. Lee, “Free vibration analysis of composite rectangular membranes with an oblique interface,” J. Sound Vibr., 251, No. 3, 505–517 (2002).
5. 5.
S. W. Kang, “Free vibration analysis of composite rectangular membranes with a bent interface,” J. Sound Vibr., 272, No. 1–2, 39–53 (2004).Google Scholar
6. 6.
C. Y. Wang and C. M. Wang, “Exact solutions for vibrating rectangular membranes placed in a vertical plane,” Int. J. Appl. Mech., 3, No. 3, 625–631 (2011).
7. 7.
R. M. Soares and P. B. Gonalves, “Nonlinear vibrations and instabilities of a stretched hyperelastic annular membrane,” Int. J. Solids Struct., 49, No. 3–4, 514–526 (2006).Google Scholar
8. 8.
P. B. Goncalves, R. M. Soares, and D. Pamplona, “Nonlinear vibrations of a radially stretched circular hyperelastic membrane,” J. Sound Vibr., 327, No. 1–2, 231–248 (2009).Google Scholar
9. 9.
Z. L. Zheng, W. J. Song, C. J. Liu, et al., “Study on dynamic response of rectangular orthotropic membranes under impact loading,” J. Adhesion Sci. Technol., 26, No. 10–11, 1467–1479 (2012).Google Scholar
10. 10.
C. Shin, J. T. Chung, and W. Kim, “Dynamic characteristics of the out-of-plane vibration for an axially moving membrane,” J. Sound Vibr., 286, No. 4–5, 1019–1031 (2005).Google Scholar
11. 11.
H. Zhang and J. Shan, “Initial form finding and free vibration properties study of membrane,” in: Proc. 2006 Xi’an Int. Conf. of Architecture and Technology, Proceedings-Architecture in Harmony, Xian, China (2006), pp. 316–320.Google Scholar
12. 12.
Y. L. Li, C. G. Wang, and H. F. Tan, “Research on free vibration of wrinkled membranes,” in: Proc. 5th Int. Conf. on Nonlinear Mechanics, Shanghai, China (2007), pp. 649–654.Google Scholar
13. 13.
J. J. Pan and M. Gu, “Geometric nonlinear effect to square tensioned membrane’s free vibration,” J. Tongji University (Natural Science), 35, No. 11, 1450–1454 (2007).Google Scholar
14. 14.
S. Y. Reutskiy, “Vibration analysis of arbitrarily shaped membranes,” CMES-Computer Modeling in Engineering & Science, 51, No. 2, 115–142 (2009).
15. 15.
F. Formosa, “Nonlinear dynamics analysis of a membrane Stirling engine: starting and stable operation,” J. Sound Vibr., 326, No. 3–5, 794–808 (2009).Google Scholar
16. 16.
Z. L. Zheng, C. J. Liu, X. T. He, et al., “Free vibration analysis of rectangular orthotropic membranes in large deflection,” Math. Probl. Eng., Article ID 634362 (2009).Google Scholar
17. 17.
C. J. Liu, Z. L. Zheng, X. T. He, et al., “L–P perturbation solution of nonlinear free vibration of prestressed orthotropic membrane in large amplitude,” Math. Probl. Eng., Article ID 561364 (2010).Google Scholar
18. 18.
J. H. He, “Homotopy perturbation technique,” Comp. Meth. Appl. Mech. Eng., 178, No. 3, 257–262 (1999).
19. 19.
J. H. He, “Homotopy perturbation method: A new nonlinear analytical technique,” Appl. Math. Comp., 135, No. 1, 73–79 (2003).
20. 20.
J. H. He, “Comparison of homotopy perturbation method and homotopy analysis method,” Appl. Math. Comp., 156, No. 2, 527–539 (2004).
21. 21.
J. H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” Int. J. Non-Linear Mech., 35, No. 1, 37–43 (2000).
22. 22.
J. H. He, “The homotopy perturbation method for nonlinear oscillators with discontinuities,” Appl. Math. Comp., 151, No. 1, 287–292 (2004).
23. 23.
L. Cveticanin, “Homotopy-perturbation method for pure nonlinear differential equation,” Chaos, Solitons and Fractals, 30, No. 5, 1221–1230 (2006).
24. 24.
A. Yildirim, “Application of the homotopy perturbation method for the Fokker–Planck equation,” Int. J. Numer. Meth. Biomedical Eng., 26, No. 9, 1144–1154 (2010).
25. 25.
A. M. A. El-Sayed, A. Elsaid, I. L. El-Kalla, et al., “A homotopy perturbation technique for solving partial differential equations of fractional order in finite domains,” Appl. Math. Comp., 218, No. 17, 8329–8340 (2012).
26. 26.
A. Golbabai and M. Javidi, “Application of He’s homotopy perturbation method for nth-order integro-differential equations,” Appl. Math. Comp., 190, No. 2, 1409–1416 (2007).
27. 27.
B. Ozturk and S. B. Coskun, “The homotopy perturbation method for free vibration analysis of beam on elastic foundation,” Struct. Eng. Mech., 37, No. 4, 415–425 (2011).
28. 28.
H. Saffari, I. Mansouri, M. H. Bagheripour, et al., “Elasto-plastic analysis of steel plane frames using homotopy perturbation method,” J. Const. Steel Res., 70, 350–357 (2012).
29. 29.
A. R. Ghotbi, A. Barari, and D. D. Ganji, “Solving ratio-dependent predator-prey system with constant effort harvesting using homotopy perturbation method,” Math. Probl. Eng., Article ID 945420 (2008).Google Scholar
30. 30.
K. Reck, E. V. Thomsen, and O. Hansen, “Solving the Helmholtz equation in conformal mapped ARROW structures using homotopy perturbation method,” Optics Express, 19, No. 3, 1808–1823 (2011).
31. 31.
I. V. Andrianov, J. Awrejcewicz, and V. Chernetskyy, “Analysis of natural in-plane vibration of rectangular plates using homotopy perturbation approach,” Math. Probl. Eng., Article ID 20598 (2006).Google Scholar
32. 32.
G. Domairry and A. Aziz, “Approximate analysis of MHD squeeze flow between two parallel disks with suction or injection by homotopy perturbation method,” Math. Probl. Eng., Article ID 603916 (2009).Google Scholar
33. 33.
F. Shakeri and M. Dehghan, “Solution of delay differential equations via a homotopy perturbation method,” Math. Comp. Model., 48, No. 3–4, 486–498 (2008).
34. 34.
A. Yildirim, “Application of He’s homotopy perturbation method for solving the Cauchy reaction-diffusion problem,” Comp. Math. Appl., 57, No. 4, 612–618 (2009).

## Authors and Affiliations

• C. J. Liu
• 1
• 2
• Z. L. Zheng
• 3
• X. Y. Yang
• 4
• J. J. Guo
• 5
1. 1.State Key Laboratory of Geohazard Prevention and Geoenvironment ProtectionChengdu University of TechnologyChengduChina
2. 2.College of Environment and Civil EngineeringChengdu University of TechnologyChengduChina
3. 3.College of Civil EngineeringChongqing UniversityChongqingChina
4. 4.College of nuclear technology and automation EngineeringChengdu University of TechnologyChengduChina
5. 5.Chongqing Water Resources and Electric Engineering CollegeChongqingChina