International Applied Mechanics

, Volume 54, Issue 1, pp 64–74 | Cite as

Estimating the Strength of Layered Cylindrical Shells Under Creep

Article
  • 5 Downloads

The stress–strain state and strength of layered hollow cylinders and layered cylindrical shells under creep conditions are determined. The solution for two-layer shells with different thicknesses ratios of layers found using the straight element hypothesis is collated with spatial solutions for axisymmetrically loaded hollow cylinders. The technique of solving the spatial initial–boundary-value problem is based on the combined application of the Ritz and R-function methods and the Runge–Kutta–Merson method for time integration with automatic time step control. The initial–boundary-value problem for shells is also solved using the Runge–Kutta–Merson method in combination with the Runge–Kutta method and Godunov’s discrete orthogonalization method for solving the boundary-value problem at every time step.

Keywords

layered cylindrical shell layered hollow cylinder creep strength criterion time to failure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. P. Brusentsov, et al., “Studying the strength of solid oxide fuel cells of plate shape”, in: Solid Oxide Fuel Cells [in Russian], RF YaTs-VNIITF, Snezhink (2003), pp. 233–240.Google Scholar
  2. 2.
    A. V. Burlakon, G. I. L’vov, and O. K. Morachkovskii, Long-Term Strength of Shells [in Russian], Vyshchaya Shkola, Kharkov (1981).Google Scholar
  3. 3.
    A. S. Vol’mir, Nonlinear Dynamics of Plates and Shells [in Russian], Nauka, Moscow (1974).Google Scholar
  4. 4.
    A. Z. Galishyn and S. N. Sklepus, “Application of shell models for determination of creep and damageability of hollow cylinders,” Zb. Nauch. Prats’ Dneprodzerzhinsk. Derzh. Univ., No. 1(26), 60–70 (2015).Google Scholar
  5. 5.
    Ya. M. Grigorenko and A. T. Vasilenko, Theory of Shells of Variable Stiffness, Vol 4 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kiev (1981).Google Scholar
  6. 6.
    V. S. Gudramovich, Creep Theory and Its Applications for Design of Elements of Thin-Walled Structures [in Russian], Naukova Dumka, Kiev (2005).Google Scholar
  7. 7.
    A. A. Zolochkovskii, A. N. Sklepus, and S. N. Sklepus, Nonlinear Solid Mechanics [in Russian], Biznes Investor Grup, Kharkov (2011).Google Scholar
  8. 8.
    L. M. Kachanov, Fundamentals of Fracture Mechanics [in Russian], Nauka, Moscow (1974).Google Scholar
  9. 9.
    V. I. Krylov, V. V. Bobkov, and P. I. Monastyrniy, Numerical Methods [in Russian], Nauka, Moscow (1977).Google Scholar
  10. 10.
    A. M. Lokoshchenko, Creep and Long-Term Strength of Materials [in Russian], Fizmatgiz, Moscow (2015).Google Scholar
  11. 11.
    A. M. Lokoshchenko, N. E. Pechenina, and S. A. Shesterikov, “Life of cylindrical shells in pure bending under creep,” Prikl. Mat. Mekh., No. 12, 73–78 (1989).MATHGoogle Scholar
  12. 12.
    Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Nauka, Moscow (1966).MATHGoogle Scholar
  13. 13.
    A. O. Rasskazov, I. I. Sokolovskaya, and N. A. Shulga, Theory and Design of Layered Orthotropic Plates and Shells [in Russian], Vyshcha Shkola, Kyiv (1986).Google Scholar
  14. 14.
    V. L. Rvachov, Theory of R-Functions and Some Its Applications [in Russian], Naukova Dumka, Kiev (1982).Google Scholar
  15. 15.
    Yu. N. Shevchenko, M. E. Babeshko, and R. G. Tereknov, Thermal Viscoelastoplastic Processes in Complex Deformation of Structural Elements [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  16. 16.
    H. Altenbach and K. Naumenko, “Shear correction factors in creep-damage analysis of beams, plates and shells,” JSME Int. J. Ser. A , 45, No. 1, 77–83 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    H. Altenbach, K. Morachkovsky, K. Naumenko, and A. Sychov, “Zum Kriechen dunner Rotationsschalen unter Einbeziehung geometrisher Nichtlinearitat sowie der Asymmetrie der Werkstoffeigenschaften,” Forschung im Ingenieurwesen, 62, No. 3, 47–57 (1996).CrossRefGoogle Scholar
  18. 18.
    A. Galishin, A. Zolochevsky, A. Kühhorn, and M. Springmannm, “Transversal shear effect in moderately thick shells from materials with characteristics dependent on the kind of stress state under creep-damage conditions: Numerical modeling,” Techn. Mech., 29, No. 1, 48–59 (2009).Google Scholar
  19. 19.
    A. Z. Galishin, “Determination of tangential stresses in axisymmetrically loaded layered shells of revolution in inelastic nonisothermal deformation processes,” Int. Appl. Mech., 29, No. 8, 637–644 (1993).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Z. Galishin, “Axisymmetric thermoviscoelastoplastic state of thin laminated shells made of a damageable material,” Int. Appl. Mech., 44, No. 4, 431–441 (2008).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    K. Naumenko, “On the use of the first order shear deformation models of beams, plates and shells in creep lifetime estimations,” Tech. Mech., 20, No. 3, 215–226 (2000).Google Scholar
  22. 22.
    Yu. N. Shevchenko and A. Z. Galishin, “Determination of the axially symmetric geometrically nonlinear thermoviscoelastoplastic state of thin layered shells with regard for the damageability of the material,” J. Math. Sci., 162, No. 2, 216–230 (2009).CrossRefGoogle Scholar
  23. 23.
    Yu. N. Shevchenko, A. Z. Galishin, and M. E. Babeshko, “Thermoviscoelastoplastic deformation of compound shells of revolution made of a damageable material,” Int. Appl. Mech., 51, No. 6, 607–613 (2015).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    S. M. Sklepus, “Solution of the axisymmetric problem of creep and damage for a piecewise homogeneous body with an arbitrary shape of a meridian section,” J. Math. Sci., 205, No. 5, 644–658 (2015).MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Zolochevsky, S. Sklepus, A. Galishin, A. Kühhorn, and M. Kober, “A comparison between the 3D and the Kirchhoff–Love solutions for cylinders under creep-damage conditions,” Tech. Mech., 34, No. 2, 104–113 (2014).Google Scholar
  26. 26.
    A. Zolochevsky, A. Galishin, S. Sklepus, L. Parkhomenko, V. Gnitko, A. Kühhorn, M. Kober, and C. Leyens, “Benchmark creep tests for thermal barrier coating,” Vestnik NTU “KhPI”, No. 23, 159–179 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.A. N. Podgornyi Institute for Mechanical Engineering ProblemsNational Academy of Sciences of UkraineKharkovUkraine

Personalised recommendations