Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

IoT Ecosystem: A Survey on Devices, Gateways, Operating Systems, Middleware and Communication

  • 44 Accesses

Abstract

In this era of research and technology, Internet of things (IoT) takes a prominent part in the evolution of applications of the various field like health, education, smart cities, homes, agriculture etc. This paper provides a survey of the IoT ecosystem. All the components of IoT and their significance has been elaborated. The smart sensors collaborate through wireless communication and internet, with zero human activity, to deliver automated intelligent applications. In this internet world, machine-to-machine (M2M) technologies are the first phase of the IoT. As IoT is expanding, it is bringing together vast technologies as in Big Data, Artificial Intelligent, Machine Learning to tackle the huge data and devices. This paper starts by providing an overview of the taxonomy of the IoT ecosystem. Then, it provides a technical overview of IoT enabling architectures, devices, gateways, operating systems (OS), middleware, platforms, data storage, security, communication protocols and interfaces for the data flow in an ecosystem. This paper also discusses the key hurdles that need to be tackled for expanding IoT. A relation between IoT and new technologies like big data, cloud and fog computing has been briefed. Finally, it presents the growing applications that IoT delivers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

ADC:

Analog to digital convertor

BLE:

Bluetooth low energy

CSI camera port:

Camera Serial Interface camera port

DAC:

Digital to analog computer

DSI display port:

Display Serial Interface display port

FIFO:

First In First Out

GPS:

Global Positioning System

HDMI:

High Definition Multimedia Interface

HTTP:

Hyper Text Transfer Protocol

I2C:

Inter IC (Integrated Circuit)

IETF:

Internet Engineering Task Force

LAN:

Local Area Network

LCD:

Liquid Crystal Display

LoRAWAN:

Long Range Wireless Area Network

LTE:

Long Term Evolution

lwIP:

Lightweight Internet Protocol

MCU:

Microcontroller Unit

microUSB:

Micro Universal Serial Bus

NB-IoT:

Narrow Band IoT

RFID:

Radio Frequency Identification

RISC:

Reduced Instruction Set Computer

RPL:

Routing protocol

RTOS:

Real Time Operating System

SPI:

Serial peripheral interface

UART:

Universal Asynchronous Receiver/Transmitter

UDP:

User Datagram Protocol

uIP:

Micro Internet Protocol

USART:

Universal Synchronous/Asynchronous Receiver/Transmitter

WLAN:

Wireless Local Area Network

References

  1. 1.

    X. Wang, X. Zha, W. Ni, R. P. Liu, Y. J. Guo, X. Niu and K. Zheng, Survey on blockchain for Internet of Things, Computer Communications, Vol. 36, pp. 10–29, 2019.

  2. 2.

    A. Čolaković and M. Hadžialić, Internet of Things (IoT): a review of enabling technologies, challenges, and open research issues, Computer Networks, Vol. 144, pp. 17–39, 2018.

  3. 3.

    I. Mashal, O. Alsaryrah, T. Y. Chung, C. Z. Yang, W. H. Kuo and D. P. Agrawal, Choices for interaction with things on Internet and underlying issues, Ad Hoc Networks, Vol. 28, pp. 68–90, 2015.

  4. 4.

    I. Lee and K. Lee, The Internet of Things (IoT): applications, investments, and challenges for enterprises, Business Horizons, Vol. 58, No. 4, pp. 431–440, 2015.

  5. 5.

    A. Whitmore, A. Agarwal and L. Da Xu, The Internet of Things—a survey of topics and trends, Information Systems Frontiers, Vol. 17, No. 2, pp. 261–274, 2015.

  6. 6.

    S. D. T. Kelly, N. K. Suryadevara and S. C. Mukhopadhyay, Towards the implementation of IoT for environmental condition monitoring in homes, IEEE Sensors Journal, Vol. 13, No. 10, pp. 3846–3853, 2013.

  7. 7.

    A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, Internet of things: a survey on enabling technologies, protocols, and applications, IEEE Communications Surveys & Tutorials, Vol. 17, No. 4, pp. 2347–2376, 2015.

  8. 8.

    E. Ahmed, I. Yaqoob, A. Gani, M. Imran and M. Guizani, Internet-of-things-based smart environments: state of the art, taxonomy, and open research challenges, IEEE Wireless Communications, Vol. 23, No. 5, pp. 10–16, 2016.

  9. 9.

    F. Al-Turjman, Artificial Intelligence in IoT, SpringerCham, 2019.

  10. 10.

    A. A.Osuwa, E. B. Ekhoragbon, and L. T. Fat, Application of artificial intelligence in Internet of Things. In 2017 9th international conference on computational intelligence and communication networks (CICN), IEEE, New York, pp. 169–173, 2017.

  11. 11.

    S. Krco, B. Pokric, and F. Carrez, Designing IoT architecture (s): a European perspective. In 2014 IEEE world forum on Internet of Things (WF-IoT), IEEE, New York, pp. 79–84, 2014.

  12. 12.

    O. Novo, Blockchain meets IoT: an architecture for scalable access management in IoT, IEEE Internet of Things Journal, Vol. 5, No. 2, pp. 1184–1195, 2018.

  13. 13.

    H. Guo, J. Ren, D. Zhang, Y. Zhang and J. Hu, A scalable and manageable IoT architecture based on transparent computing, Journal of Parallel and Distributed Computing, Vol. 118, pp. 5–13, 2018.

  14. 14.

    J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami, Internet of Things (IoT): a vision, architectural elements, and future directions, Future Generation Computer Systems, Vol. 29, No. 7, pp. 1645–1660, 2013.

  15. 15.

    R. Chen, J. Guo and F. Bao, Trust management for SOA-based IoT and its application to service composition, IEEE Transactions on Services Computing, Vol. 9, No. 3, pp. 482–495, 2016.

  16. 16.

    P. Sethi and S. R. Sarangi, Internet of things: architectures, protocols, and applications, Journal of Electrical and Computer Engineering, 2017. https://doi.org/10.1155/2017/9324035.

  17. 17.

    J. Ren, H. Guo, C. Xu and Y. Zhang, Serving at the edge: a scalable iot architecture based on transparent computing, IEEE Network, Vol. 31, No. 5, pp. 96–105, 2017.

  18. 18.

    S. Balaji, K. Nathani and R. Santhakumar, IoT technology, applications and challenges a contemporary survey, Wireless Personal Communications, Vol. 108, pp. 1–26, 2019.

  19. 19.

    S. Kraijak, and P. Tuwanut, A survey on IoT architectures, protocols, applications, security, privacy, real-world implementation and future trends. In 11th international conference on wireless communications, networking and mobile computing (WiCOM 2015), 2015.

  20. 20.

    N. Singh and M. Vardhan, Distributed ledger technology-based property transaction system with support for IoT devices, International Journal of Cloud Applications and Computing (IJCAC), Vol. 9, No. 2, pp. 60–78, 2019.

  21. 21.

    V. Vujović and M. Maksimović, Raspberry Pi as a Sensor Web node for home automation, Computers & Electrical Engineering, Vol. 44, pp. 153–171, 2015.

  22. 22.

    T. Käfer, S. R. Bader, L. Heling, R. Manke, and A. Harth, Exposing Internet of Things devices via REST and linked data interfaces. In Proc. 2nd workshop semantic web technol. Internet Things, pp. 1–14, 2017.

  23. 23.

    S. Huh, S. Cho, and S. Kim, Managing IoT devices using blockchain platform. In 2017 19th international conference on advanced communication technology (ICACT), IEEE, New York, pp. 464–467, 2017.

  24. 24.

    E. Baccelli, C. Gündoğan, O. Hahm, P. Kietzmann, M. S. Lenders, H. Petersen, K. Schleiser, T. C. Schmidt and M. Wählisch, RIOT: an open-source operating system for low-end embedded devices in the IoT, IEEE Internet of Things Journal, Vol. 5, No. 6, pp. 4428–4440, 2018.

  25. 25.

    D. Zhai, R. Zhang, L. Cai, B. Li and Y. Jiang, Energy-efficient user scheduling and power allocation for NOMA-based wireless networks with massive IoT devices, IEEE Internet of Things Journal, Vol. 5, No. 3, pp. 1857–1868, 2018.

  26. 26.

    F. Shaikh, E. Bou-Harb, N. Neshenko, A. P. Wright and N. Ghani, Internet of malicious things: correlating active and passive measurements for inferring and characterizing internet-scale unsolicited IoT devices, IEEE Communications Magazine, Vol. 56, No. 9, pp. 170–177, 2018.

  27. 27.

    M. A. R. Shuman, A. Goel, S. Sharma, B. Gupta, A. Aggarwal, I. D. Guedalia, R. P. Chandhok, and J. Guedalia, Qualcomm Inc, Establishing groups of internet of things (IOT) devices and enabling communication among the groups of IOT devices. U.S. Patent 9853826, 2017.

  28. 28.

    P. Desai, A. Sheth, and P. Anantharam, Semantic gateway as a service architecture for iot interoperability. In 2015 IEEE International Conference on Mobile Services, IEEE, New York, pp. 313–319, 2015.

  29. 29.

    G. Aloi, G. Caliciuri, G. Fortino, R. Gravina, P. Pace, W. Russo and C. Savaglio, Enabling IoT interoperability through opportunistic smartphone-based mobile gateways, Journal of Network and Computer Applications, Vol. 81, pp. 74–84, 2017.

  30. 30.

    B. Kang and H. Choo, An experimental study of a reliable IoT gateway, ICT Express, Vol. 4, No. 3, pp. 130–133, 2018.

  31. 31.

    Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, Iot gateway: bridging wireless sensor networks into internet of things. In 2010 IEEE/IFIP international conference on embedded and ubiquitous computing, IEEE, New York, pp. 347–352, 2010.

  32. 32.

    B. Kang, D. Kim and H. Choo, Internet of everything: a large-scale autonomic IoT gateway, IEEE Transactions on Multi-Scale Computing Systems, Vol. 3, No. 3, pp. 206–214, 2017.

  33. 33.

    S. K. Datta, C. Bonnet, and N. Nikaein, An IoT gateway centric architecture to provide novel M2M services. In 2014 IEEE World Forum on Internet of Things (WF-IoT), IEEE, New York, pp. 514–519, 2014.

  34. 34.

    H. Chen, X. Jia, and H. Li, October. A brief introduction to IoT gateway. In IET international conference on communication technology and application (ICCTA 2011), IET, London, pp. 610–613, 2011.

  35. 35.

    S. Guoqiang, C. Yanming, Z. Chao, and Z. Yanxu, Design and implementation of a smart IoT gateway. In 2013 IEEE international conference on green computing and communications and IEEE internet of things and IEEE cyber, physical and social computing, IEEE, New York, pp. 720–723, 2013.

  36. 36.

    F. C. Cheng, Automatic and secure Wi-Fi connection mechanisms for IoT end-devices and gateways. In International conference for emerging technologies in computing, Springer, Cham, pp. 98–106, 2018.

  37. 37.

    P. Gaur, and M. P. Tahiliani, Operating systems for IoT devices: a critical survey. In 2015 IEEE region 10 symposium, IEEE, New York, pp. 33–36, 2015.

  38. 38.

    O. Hahm, E. Baccelli, H. Petersen and N. Tsiftes, Operating systems for low-end devices in the internet of things: a survey, IEEE Internet of Things Journal, Vol. 3, No. 5, pp. 720–734, 2016.

  39. 39.

    A. Musaddiq, Y. B. Zikria, O. Hahm, H. Yu, A. K. Bashir and S. W. Kim, A survey on resource management in IoT operating systems, IEEE Access, Vol. 6, pp. 8459–8482, 2018.

  40. 40.

    D. Balsamo, A. Elboreini, B. M. Al-Hashimi, and G. V. Merrett, Exploring ARM mbed support for transient computing in energy harvesting IoT systems. In 2017 7th IEEE international workshop on advances in sensors and interfaces (IWASI), IEEE, New York, pp. 115–120, 2017.

  41. 41.

    A. Dunkels, O. Schmidt, N. Finne, J. Eriksson, F. Österlind, and N. T. M. Durvy, The Contiki os: the operating system for the internet of things, 2011, http://www.contikios.org.

  42. 42.

    V. J. P. Amorim, S. Delabrida, and R. A. R. Oliveira, A constraint-driven assessment of operating systems for wearable devices. In 2016 VI Brazilian symposium on computing systems engineering (SBESC), IEEE, New York, pp. 150–155, 2016.

  43. 43.

    P. Dutta and A. Dunkels, Operating systems and network protocols for wireless sensor networks, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 370, No. 1958, pp. 68–84, 2012.

  44. 44.

    A. Kazmi, M. Serrano and J. Soldatos, Vital-os: an open-source iot operating system for smart cities, IEEE Communications Standards Magazine, Vol. 2, No. 2, pp. 71–77, 2018.

  45. 45.

    F. Javed, M. K. Afzal, M. Sharif and B. S. Kim, Internet of things (IoT) operating systems support, networking technologies, applications, and challenges: a comparative review, IEEE Communications Surveys & Tutorials, Vol. 20, No. 3, pp. 2062–2100, 2018.

  46. 46.

    D. Zhang, C. C. Chan and G. Y. Zhou, Enabling Industrial Internet of Things (IIoT) towards an emerging smart energy system, Global Energy Interconnection, Vol. 1, No. 1, pp. 39–47, 2018.

  47. 47.

    A. C. G. Anadiotis, S. Milardo, G. Morabito and S. Palazzo, Toward unified control of networks of switches and sensors through a network operating system, IEEE Internet of Things Journal, Vol. 5, No. 2, pp. 895–904, 2018.

  48. 48.

    R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar and J. Ott, Consolidate IoT edge computing with lightweight virtualization, IEEE Network, Vol. 32, No. 1, pp. 102–111, 2018.

  49. 49.

    S. Iraji, P. Mogensen and R. Ratasuk, Recent advances in M2M communications and internet of things (IoT), International Journal of Wireless Information Networks, Vol. 24, pp. 240–242, 2017. https://doi.org/10.1007/s10776-017-0362-3.

  50. 50.

    S. Persia, C. Carciofi, and M. Faccioli, NB-IoT and LoRA connectivity analysis for M2M/IoT smart grids applications. In 2017 AEIT international annual conference, IEEE, New York, pp. 1–6, 2017.

  51. 51.

    E. S. Lohan, M. Koivisto, O. Galinina, S. Andreev, A. Tolli, G. Destino, M. Costa, K. Leppanen, Y. Koucheryavy and M. Valkama, Benefits of positioning-aided communication technology in high-frequency industrial IoT, IEEE Communications Magazine, Vol. 56, No. 12, pp. 142–148, 2018.

  52. 52.

    M. Siekkinen, M. Hiienkari, J. K. Nurminen, and J. Nieminen, How low energy is Bluetooth low energy? Comparative measurements with zigbee/802.15. 4. In 2012 IEEE wireless communications and networking conference workshops (WCNCW), IEEE, New York, pp. 232–237, 2012.

  53. 53.

    M. M. Alam, H. Malik, M. I. Khan, T. Pardy, A. Kuusik and Y. Le Moullec, A survey on the roles of communication technologies in IoT-based personalized healthcare applications, IEEE Access, Vol. 6, pp. 36611–36631, 2018.

  54. 54.

    A. A. Mutlag, M. K. A. Ghani, N. A. Arunkumar, M. A. Mohamed and O. Mohd, Enabling technologies for fog computing in healthcare IoT systems, Future Generation Computer Systems, Vol. 90, pp. 62–78, 2019.

  55. 55.

    P. Pongle, and G. Chavan, A survey: attacks on RPL and 6LoWPAN in IoT. In 2015 international conference on pervasive computing (ICPC), IEEE, New York, pp. 1–6, 2015.

  56. 56.

    C. Bormann, K. Hartke, and Z. Shelby, The constrained application protocol (CoAP), RFC 7252, 2015.

  57. 57.

    S. Bansal, and D. Kumar, IoT application layer protocols: performance analysis and significance in smart city. In 2019 10th international conference on computing, communication and networking technologies (ICCCNT), IEEE, New York, pp. 1–6, 2019.

  58. 58.

    J. Wan, B. Chen, M. Imran, F. Tao, D. Li, C. Liu and S. Ahmad, Toward dynamic resources management for IoT-based manufacturing, IEEE Communications Magazine, Vol. 56, No. 2, pp. 52–59, 2018.

  59. 59.

    A. A. Zaidan, B. B. Zaidan, M. Y. Qahtan, O. S. Albahri, A. S. Albahri, M. Alaa, F. M. Jumaah, M. Talal, K. L. Tan, W. L. Shir and C. K. Lim, A survey on communication components for IoT-based technologies in smart homes, Telecommunication Systems, Vol. 69, No. 1, pp. 1–25, 2018.

  60. 60.

    R. Bonetto, N. Bui, V. Lakkundi, A. Olivereau, A. Serbanati, and M. Rossi, Secure communication for smart IoT object sacks, use cases and practical examples. In 2012 IEEE international symposium on a world of wireless, mobile and multimedia networks (WoWMoM), IEEE, New York, pp. 1–7, 2012.

  61. 61.

    S. Al-Sarawi, M. Anbar, K. Alieyan, and M. Alzubaidi, Internet of Things (IoT) communication protocols. In 2017 8th international conference on information technology (ICIT), IEEE, New York, pp. 685–690, 2017.

  62. 62.

    K. Ponnusamy and N. Rajagopalan, Internet of things: a survey on IoT protocol standards. Progress in Advanced Computing and Intelligent Engineering, SpringerSingapore, 2018. pp. 651–663.

  63. 63.

    B. Vejlgaard, M. Lauridsen, H. Nguyen, I. Z. Kovács, P. Mogensen, and M. Sorensen, Coverage and capacity analysis of sigfox, Lora, GPRS, and nb-iot. In 2017 IEEE 85th vehicular technology conference (VTC Spring), IEEE, New York, pp. 1–5, 2017.

  64. 64.

    M. Lauridsen, H. Nguyen, B. Vejlgaard, I. Z. Kovács, P. Mogensen, and M. Sorensen, Coverage comparison of GPRS, NB-IoT, LoRa, and SigFox in a 7800 km2 area. In 2017 IEEE 85th vehicular technology conference (VTC Spring), IEEE, New York, pp. 1–5, 2017.

  65. 65.

    R. S. Sinha, Y. Wei and S. H. Hwang, A survey on LPWA technology: LoRa and NB-IoT, Ict Express, Vol. 3, No. 1, pp. 14–21, 2017.

  66. 66.

    J. Dizdarević, F. Carpio, A. Jukan and X. Masip-Bruin, A survey of communication protocols for internet of things and related challenges of fog and cloud computing integration, ACM Computing Surveys (CSUR), Vol. 51, No. 6, p. 116, 2019.

  67. 67.

    Y. Chen, and T. Kunz, Performance evaluation of IoT protocols under a constrained wireless access network. In 2016 international conference on selected topics in mobile & wireless networking (MoWNeT), IEEE, New York, pp. 1–7, 2016.

  68. 68.

    U. D. Ulusar, F. Al-Turjman, and G. Celik, An overview of Internet of things and wireless communications. In 2017 international conference on computer science and engineering (UBMK), IEEE, New York, pp. 506–509, 2017.

  69. 69.

    K. Hartke, Observing resources in the constrained application protocol (CoAP) (No. RFC 7641), 2015.

  70. 70.

    K. Mekki, E. Bajic, F. Chaxel and F. Meyer, A comparative study of LPWAN technologies for large-scale IoT deployment, ICT Express, Vol. 5, No. 1, pp. 1–7, 2019.

  71. 71.

    W. Ayoub, A. E. Samhat, F. Nouvel, M. Mroue and J. C. Prévotet, Internet of mobile things: overview of LoRaWAN, DASH7, and NB-IoT in LPWANs standards and supported mobility, IEEE Communications Surveys & Tutorials, Vol. 21, No. 2, pp. 1561–1581, 2018.

  72. 72.

    M. Centenaro and L. Vangelista, Time-power multiplexing for LoRa-based IoT networks: an effective way to boost LoRaWAN network capacity, International Journal of Wireless Information Networks, Vol. 26, pp. 1–11, 2019.

  73. 73.

    A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal and Q. Z. Sheng, IoT middleware: a survey on issues and enabling technologies, IEEE Internet of Things Journal, Vol. 4, No. 1, pp. 1–20, 2017.

  74. 74.

    M. A. da Cruz, J. J. Rodrigues, A. K. Sangaiah, J. Al-Muhtadi and V. Korotaev, Performance evaluation of IoT middleware, Journal of Network and Computer Applications, Vol. 109, pp. 53–65, 2018.

  75. 75.

    S. Bandyopadhyay, M. Sengupta, S. Maiti and S. Dutta, Role of middleware for internet of things: a study, International Journal of Computer Science and Engineering Survey, Vol. 2, No. 3, pp. 94–105, 2011.

  76. 76.

    A. Palade, C. Cabrera, F. Li, G. White, M. A. Razzaque and S. Clarke, Middleware for internet of things: an evaluation in a small-scale IoT environment, Journal of Reliable Intelligent Environments, Vol. 4, No. 1, pp. 3–23, 2018.

  77. 77.

    C. Pereira, J. Cardoso, A. Aguiar and R. Morla, Benchmarking Pub/Sub IoT middleware platforms for smart services, Journal of Reliable Intelligent Environments, Vol. 4, No. 1, pp. 25–37, 2018.

  78. 78.

    A. Ranganathan, J. Al-Muhtadi, S. Chetan, R. Campbell and M. D. Mickunas, Middleware: a middleware for location awareness in ubiquitous computing applications. ACM/IFIP/USENIX International Conference on Distributed Systems Platforms and Open Distributed Processing, SpringerBerlin, 2004. pp. 397–416.

  79. 79.

    G. Kokkonis, A. Chatzimparmpas, and S. Kontogiannis, Middleware IoT protocols performance evaluation for carrying out clustered data. In 2018 South-Eastern European design automation, computer engineering, computer networks and society media conference (SEEDA_CECNSM), IEEE, New York, pp. 1–5, 2018.

  80. 80.

    H. Hejazi, H. Rajab, T. Cinkler, and L. Lengyel, Survey of platforms for massive IoT. In 2018 IEEE international conference on future IoT technologies (future IoT), IEEE, New York, pp. 1–8, 2018.

  81. 81.

    J. Kim, J. Yun, S. C. Choi, D. N. Seed, G. Lu, M. Bauer, A. Al-Hezmi, K. Campowsky and J. Song, Standard-based IoT platforms interworking: implementation, experiences, and lessons learned, IEEE Communications Magazine, Vol. 54, No. 7, pp. 48–54, 2016.

  82. 82.

    A. Bröring, S. Schmid, C. K. Schindhelm, A. Khelil, S. Käbisch, D. Kramer, D. Le Phuoc, J. Mitic, D. Anicic and E. Teniente, Enabling IoT ecosystems through platform interoperability, IEEE Software, Vol. 34, No. 1, pp. 54–61, 2017.

  83. 83.

    G. Keramidas, N. Voros and M. Hübner, Components and Services for IoT Platforms, Springer International PuCham, 2016.

  84. 84.

    G. Fortino, C. Savaglio, C. E. Palau, J. S. de Puga, M. Ganzha, M. Paprzycki, M. Montesinos, A. Liotta, and M. Llop, Towards multi-layer interoperability of heterogeneous IoT platforms: the INTER-IoT approach. In Integration, interconnection, and interoperability of IoT systems, Springer, Cham, pp. 199–232, 2018.

  85. 85.

    F. Y. Okay and S. Ozdemir, Routing in fog-enabled IoT platforms: a survey and an SDN-based solution, IEEE Internet of Things Journal, Vol. 5, No. 6, pp. 4871–4889, 2018.

  86. 86.

    T. Jell, C. Baumgartner, A. Bröring, J. Mitic and B. I. G. IoT, interconnecting IoT platforms from different domains—first success story. Information Technology-New Generations, SpringerCham, 2018. pp. 721–724.

  87. 87.

    B. B. Gupta and D. P. Agrawal, editors., Handbook of Research on Cloud Computing and Big Data Applications in IoT, IGI GlobalHershey, 2019.

  88. 88.

    A. Ghosh, D. Chakraborty and A. Law, Artificial intelligence in Internet of things, CAAI Transactions on Intelligence Technology, Vol. 3, No. 4, pp. 208–218, 2018.

  89. 89.

    A. Oussous, F. Z. Benjelloun, A. A. Lahcen and S. Belfkih, Big Data technologies: a survey, Journal of King Saud University-Computer and Information Sciences, Vol. 30, No. 4, pp. 431–448, 2018.

  90. 90.

    G. Sun, V. Chang, S. Guan, M. Ramachandran, J. Li and D. Liao, Big Data and Internet of Things—fusion for different services and its impacts, Future Generation Computer Systems, Vol. 86, pp. 1368–1370, 2018.

  91. 91.

    C. Stergiou, K. E. Psannis, B. G. Kim and B. Gupta, Secure integration of IoT and cloud computing, Future Generation Computer Systems, Vol. 78, pp. 964–975, 2018.

  92. 92.

    K. Hossain, M. Rahman and S. Roy, IoT data compression and optimization techniques in cloud storage: current prospects and future directions, International Journal of Cloud Applications and Computing (IJCAC), Vol. 9, No. 2, pp. 43–59, 2019.

  93. 93.

    Y. A. Mo, Data security storage method for IoT under Hadoop cloud computing platform, International Journal of Wireless Information Networks, Vol. 26, pp. 152–157, 2019. https://doi.org/10.1007/s10776-019-00434-x.

  94. 94.

    B. B. Gupta, Computer and Cybersecurity: Principles, Algorithm, Applications, and Perspectives, CRC PressBoca Raton, 2018.

  95. 95.

    C. Stergiou, K. E. Psannis, B. B. Gupta and Y. Ishibashi, Security, privacy & efficiency of sustainable cloud computing for big data & IoT, Sustainable Computing: Informatics and Systems, Vol. 19, pp. 174–184, 2018.

  96. 96.

    A. Sehgal, V. Perelman, S. Kuryla and J. Schonwalder, Management of resource-constrained devices in the internet of things, IEEE Communications Magazine, Vol. 50, No. 12, pp. 144–149, 2012.

  97. 97.

    Z. K. Zhang, M. C. Y. Cho, C. W. Wang, C. W. Hsu, C. K. Chen, and S. Shieh, IoT security: ongoing challenges and research opportunities. In 2014 IEEE 7th international conference on service-oriented computing and applications, IEEE, New York, pp. 230–234, 2014.

  98. 98.

    A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, Blockchain for IoT security and privacy: the case study of a smart home. In 2017 IEEE international conference on pervasive computing and communications workshops (PerCom workshops), IEEE, New York, pp. 618–623, 2017.

  99. 99.

    B. Guo, D. Zhang, Z. Wang, Z. Yu and X. Zhou, Opportunistic IoT: exploring the harmonious interaction between human and the internet of things, Journal of Network and Computer Applications, Vol. 36, No. 6, pp. 1531–1539, 2013.

  100. 100.

    C. Chang, S. N. Srirama and R. Buyya, Internet of things (IoT) and new computing paradigms, Fog and Edge Computing: Principles and Paradigms, Vol. 6, pp. 1–23, 2019.

  101. 101.

    I. Yaqoob, I. A. T. Hashem, A. Ahmed, S. A. Kazmi and C. S. Hong, Internet of things forensics: recent advances, taxonomy, requirements, and open challenges, Future Generation Computer Systems, Vol. 92, pp. 265–275, 2019.

  102. 102.

    M. Chen, J. Yang, X. Zhu, X. Wang, M. Liu and J. Song, Smart home 2.0: innovative smart home system powered by botanical IoT and emotion detection, Mobile Networks and Applications, Vol. 22, No. 6, pp. 1159–1169, 2017.

  103. 103.

    A. Sharif, J. P. Li and M. A. Saleem, Internet of things enabled vehicular and ad hoc networks for smart city traffic monitoring and controlling: a review, International Journal of Advanced Networking and Applications, Vol. 10, No. 3, pp. 3833–3842, 2018.

  104. 104.

    L. Catarinucci, D. De Donno, L. Mainetti, L. Palano, L. Patrono, M. L. Stefanizzi and L. Tarricone, An IoT-aware architecture for smart healthcare systems, IEEE Internet of Things Journal, Vol. 2, No. 6, pp. 515–526, 2015.

  105. 105.

    F. Fernandez, and G. C. Pallis, Opportunities and challenges of the Internet of Things for healthcare: systems engineering perspective. In 2014 4th international conference on wireless mobile communication and healthcare-transforming healthcare through innovations in mobile and wireless technologies (MOBIHEALTH), IEEE, New York, pp. 263–266, 2014.

  106. 106.

    A. Iyengar, A. Kundu and G. Pallis, Healthcare informatics and privacy, IEEE Internet Computing, Vol. 22, No. 2, pp. 29–31, 2018.

  107. 107.

    R. Zgheib, E. Conchon and R. Bastide, Semantic middleware architectures for IoT healthcare applications. Enhanced Living Environments, SpringerCham, 2019. pp. 263–294.

  108. 108.

    S. B. Baker, W. Xiang and I. Atkinson, Internet of things for smart healthcare: technologies, challenges, and opportunities, IEEE Access, Vol. 5, pp. 26521–26544, 2017.

  109. 109.

    D. A. Gandhi, and M. Ghosal, Intelligent healthcare using IoT: a extensive survey. In 2018 second international conference on inventive communication and computational technologies (ICICCT), IEEE, New York, pp. 800–802, 2018.

  110. 110.

    N. Deshai, S. Venkataramana, B. V. D. S. Sekhar, K. Srinivas and G. P. S. Varma, A study on IOT tools, protocols, applications, opportunities and challenges. Information Systems Design and Intelligent Applications, SpringerSingapore, 2019. pp. 367–380.

  111. 111.

    K. Lakhwani, H. Gianey, N. Agarwal and S. Gupta, Development of IoT for smart agriculture a review. Emerging Trends in Expert Applications and Security, SpringerSingapore, 2019. pp. 425–432.

  112. 112.

    J. P. Lemayian and F. Al-Turjman, Intelligent IoT communication in smart environments: an overview. Artificial Intelligence in IoT, SpringerCham, 2019. pp. 207–221.

Download references

Author information

Correspondence to Sharu Bansal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bansal, S., Kumar, D. IoT Ecosystem: A Survey on Devices, Gateways, Operating Systems, Middleware and Communication. Int J Wireless Inf Networks (2020). https://doi.org/10.1007/s10776-020-00483-7

Download citation

Keywords

  • IoT devices
  • OS
  • Middleware
  • Communication
  • Gateways
  • Security