Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Transform Free Modeling of Finite Buffer Non-Saturated IEEE 802.11 DCF in Ad Hoc Networks

  • 12 Accesses

Abstract

Many analytical models for performance evaluation of non-saturated IEEE 802.11 DCF utilizing finite buffer have been proposed in last two decades. In order to determine service time and other key parameters most of these models utilized the mathematical concept of transform inversion algorithm. Although, the existing approach is effective but it is complex and computationally intensive. This paper presents a transform free approach for computing various key performance parameters in simple and fast manner. The use of renewal theory approach for determining collision probability leads to simplicity and easy to work with mathematical process. The results obtained from the proposed method are accurate and validated through ns-2 simulations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in the 2.4 GHz Band, IEEE Standard 802.11b, 1999.

  2. 2.

    IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in the 5 GHz Band, IEEE Standard 802.11a, 1999.

  3. 3.

    G. Bianchi, Performance analysis of the IEEE 802.11 distributed coordination function, IEEE Journals on Selected Areas in Communication, Vol. 18, No. 3, pp. 535–547, 2000.

  4. 4.

    P. Chatzimisios and A. C. Boucouvalas, Performance analysis of IEEE 802.11 MAC protocol for WLAN, International Journal of Communication Systems, Vol. 18, pp. 545–569, 2005.

  5. 5.

    J. Yin, The analysis of performance of IEEE 802.11 MAC protocol using Markov chain, International Journal of Computer Science and Network Security, Vol. 7, No. 12, pp. 27–37, 2007.

  6. 6.

    P. Kumar, K. S. Rangaswamy and A. Krishan, Saturation throughput analysis of IEEE 802.11b wireless local area network under high interference considering capture effects, International Journal of Computer Science and information Security, Vol. 7, No. 1, pp. 32–39, 2010.

  7. 7.

    F. Daneshgaran, M. Laddomada, F. Mesiti and M. Mondin, Saturation throughput analysis of IEEE 802.11 in presence of non-ideal transmission channel and capture effects, IEEE Transactions on Communications, Vol. 56, No. 7, pp. 1178–1188, 2008.

  8. 8.

    E. Ziouva and T. Antonakopoulos, The IEEE 802.11 distributed coordination function in small-scale Ad-Hoc wireless LANs, International Journal of Wireless Information Networks, Vol. 10, No. 1, pp. 1–15, 2003.

  9. 9.

    Y. S. Liaw, A. Dadej, and A. Jayasuriya, Performance analysis of IEEE 802.11 under limited load, In IEEE Asia Pacific conference on communications, Perth, Australia, pp. 759-763, 2005.

  10. 10.

    D. Malone, K. Duffy, and D. Leith, Modeling the 802.11 distributed coordination function with heterogeneous finite load, In Proceedings of Workshop on Resource Allocation in Wireless Networks, 2005.

  11. 11.

    F. Cali, M. Conti and E. Gregori, IEEE 802.11 protocol: design and performance evaluation of an adaptive backoff mechanism, IEEE Journal on Selected Area in Communications, Vol. 18, No. 9, pp. 1774–1780, 2000.

  12. 12.

    A. Kumar, E. Altman, D. Miorandi and M. Goyal, New Insights from a Fixed Point Analysis of Single Cell IEEE 802.11 WLANs, IEEE/ACM Transaction on Networking, Vol. 15, No. 3, pp. 588–601, 2007.

  13. 13.

    F. Daneshgaran, M. Laddomada, F. Mesiti and M. Mondin, On the linear behaviour of the throughput of IEEE 802.11 DCF in non-saturated conditions, IEEE Communication Letters, Vol. 11, No. 11, pp. 856–858, 2007.

  14. 14.

    Y. Lee, M.Y. Chung, and T.J. Lee, Performance analysis of IEEE 802.11 under non-saturated condition, Mathematical Problems in Engineering, Hindawi Publishing Corporation, 2008.

  15. 15.

    D. Malone, K. Duffy and D. Leith, Modeling the 802.11 distributed coordination function in non-saturated heterogeneous conditions, IEEE/ACM Transaction on Mobile Computing, Vol. 15, No. 1, pp. 159–172, 2007.

  16. 16.

    Q. Zhao, D. H. K. Tsang and T. Sakurai, A simple and approximate model for non-saturated IEEE 802.11 DCF, IEEE Transaction on Mobile Computing, Vol. 8, No. 11, pp. 1539–1553, 2009.

  17. 17.

    D. Senthilkumar and A. Krishan, Nonsaturation throughput enhancement of IEEE 802.11b distributed coordination function for heterogeneous traffic under noisy environment, International Journal of Automation and Computing, Vol. 7, No. 1, pp. 95–104, 2010.

  18. 18.

    F. Daneshgaran, M. Laddomada, F. Mesiti and M. Mondin, Unsaturated throughput analysis of IEEE 802.11 in presence of non-ideal transmission channel and capture effects, IEEE Transactions on Wireless Communications, Vol. 7, No. 4, pp. 1276–1286, 2008.

  19. 19.

    F. Daneshgaran, M. Laddomada, F. Mesiti and M. Mondin, On the throughput performance of multirate IEEE 802.11 networks with variable loaded stations: analysis, modeling and a novel proportional fairness criteria, IEEE Transactions on Wireless Communications, Vol. 9, No. 5, pp. 1594–1607, 2010.

  20. 20.

    K. Duffy and A. J. Ganesh, Modeling the impact of buffering on 802.11, IEEE Communication Letters, Vol. 11, No. 2, pp. 219–221, 2007.

  21. 21.

    K. D. Huang and K. R. Duffy, On buffering hypothesis in 802.11 analytic models, IEEE Communications Letters, Vol. 13, No. 5, pp. 312–314, 2009.

  22. 22.

    W. Dong, W. Zhang, X. Chen, and G. Wei, A new load equation for 802.11 MAC performance evaluation under non-saturated conditions, In First IEEE International Conference on Communication in China: Wireless Communication Systems, pp. 482–486, 2012.

  23. 23.

    N. Gupta and C. S. Rai, Performance evaluation of IEEE 802.11 DCF in single hop Ad Hoc networks, Wireless Personal Communications, Vol. 79, pp. 2171–2193, 2014. https://doi.org/10.1007/s11277-014-1979-5.

  24. 24.

    N. Gupta, and C.S. Rai, Non-saturation Throughput Analysis of IEEE 802.11 DCF Considering Short Retry Limit for Single Hop ad hoc Networks, Proc. of 2013 Second International Conference on Future Generation Communication Technology (FGCT), London, pp. 10–15, 2013.

  25. 25.

    M. Garetto and C. F. Chiasserini, Performance Analysis of 802.11 WLANs under Sporadic Traffic, Networking 20053462 ed., SpringerHeidelberg, 2005. pp. 1343–1347.

  26. 26.

    M. Ozdemir and A. B. McDonald, On the performance of Ad Hoc wireless LANs: a practical queuing theoretical model, Performance Evaluation, Vol. 63, No. 11, pp. 1126–1157, 2006.

  27. 27.

    H. Zhai, Y. Kwon and Y. Fang, Performance analysis of IEEE 802.11 MAC protocols in wireless LANs, Wireless Communication and Mobile Computing, Vol. 4, pp. 917–931, 2004.

  28. 28.

    Q. L. Zhao, D. H. K. Tsang and T. Sakurai, Modeling nonsaturated IEEE 802.11 DCF networks under arbitrary buffer size, IEEE Transractions on Mobile Computing, Vol. 10, No. 9, pp. 1248–1263, 2011.

  29. 29.

    H. C. Tijms, A First Course in Stochastic Models, WileyHoboken, 2003. pp. 434–437.

  30. 30.

    J. M. G. Smith, Properties and performance modelling of finite buffer M/G/1/K networks, Journal of Computers and Operation Research, Vol. 38, No. 4, pp. 740–754, 2011.

  31. 31.

    J. Abate, G.L. Choudhury, W. Whitt, and W. Grassman, An Introduction to Numerical Transform Inversion and Its Application to Probability Models, Computational Probability, Kluwer, Boston, MA, pp. 257–323. 1999.

  32. 32.

    The VINT Project, The ns Manual, 2010.

  33. 33.

    D. Malone, H. Qi, D. Botvich, and P. Patras, 802.11 Buffers: When Bigger is not Better, Proc. Int. Workshop Wireless Access Flexibility, 8072, pp. 37–48, 2013.

Download references

Author information

Correspondence to Mukta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mukta, Gupta, N. Transform Free Modeling of Finite Buffer Non-Saturated IEEE 802.11 DCF in Ad Hoc Networks. Int J Wireless Inf Networks 27, 197–206 (2020). https://doi.org/10.1007/s10776-019-00476-1

Download citation

Keywords

  • Collision probability
  • Buffering
  • Short retry limit
  • CSMA/CA
  • Throughput
  • PGF