Advertisement

Time-Power Multiplexing for LoRa-Based IoT Networks: An Effective Way to Boost LoRaWAN Network Capacity

  • Marco CentenaroEmail author
  • Lorenzo Vangelista
Article
  • 150 Downloads

Abstract

Low-power wide-area networks are continuously gaining momentum as enablers of massive machine-type communication, thanks to long-range wireless technologies operating either on unlicensed spectrum like, e.g., Long-Range (LoRa) and Sigfox, or on licensed spectrum, as Narrowband-IoT. For the former category of technologies, stringent requirements in terms of channel utilization and radiated power must be fulfilled, thus algorithms and protocols for enhanced radio-resource management need to be investigated. In this paper, we propose a disruptive approach for LoRa systems, exploiting a novel operational mode at the gateways side called time-power multiplexing, which fully exploits the degrees of freedom of the unlicensed bands regulations. The simulation results show that the proposed solution boosts the number of users that a LoRa network can support with respect to the default operational mode.

Keywords

LPWAN LoRaWAN Time-power multiplexing Radio-resource management 

Notes

References

  1. 1.
    M. Centenaro and L. Vangelista. Boosting network capacity in LoRaWAN through time-power multiplexing. In Proceedings of the IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pages 134–142, Bologna, Italy, Sept 2018.Google Scholar
  2. 2.
    M. Centenaro, L. Vangelista, A. Zanella and M. Zorzi, Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios, IEEE Wireless Communications, Vol. 23, No. 5, pp. 60–67, 2016.CrossRefGoogle Scholar
  3. 3.
    CEPT. ERC 70-03 relating to the use of short range devices (SRD). ERC, Technical Report, Oct 2018.Google Scholar
  4. 4.
    Semtech Corporation. AN1200.22 LoRa Modulation Basics. May 2015. [Online]. Available: http://www.semtech.com/images/datasheet/an1200.22.pdf.
  5. 5.
    L. Vangelista, Frequency shift chirp modulation: The LoRa modulation, IEEE Signal Processing Letters, Vol. 24, No. 12, pp. 1818–1821, 2017.CrossRefGoogle Scholar
  6. 6.
    D. Croce, M. Gucciardo, S. Mangione, G. Santaromita and I. Tinnirello, Impact of LoRa imperfect orthogonality: Analysis of link-level performance, IEEE Communications Letters, Vol. 22, No. 4, pp. 796–799, 2018.CrossRefGoogle Scholar
  7. 7.
    A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, A study of LoRa: Long range & low power networks for the Internet of Things, Sensors, Vol. 16, No. 9, pp. 1–19, 2016. [Online]. Available: http://www.mdpi.com/1424-8220/16/9/1466
  8. 8.
    K. Mikhaylov, J. Petaejaejaervi, and T. Haenninen. Analysis of capacity and scalability of the LoRa low power wide area network technology. In Proceedings of the European Wireless Conference, pages 1–6, Oulu, Finland, May 2016.Google Scholar
  9. 9.
    K. Mikhaylov, J. Petäjäjärvi, and A. Pouttu. Effect of downlink traffic on performance of LoRaWAN LPWA networks: Empirical study. In Proceedings of the IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pages 1–6, Bologna, Italy, Sept 2018.Google Scholar
  10. 10.
    D. Magrin, M. Centenaro, and L. Vangelista. Performance evaluation of LoRa networks in a smart city scenario. In Proceedings of the IEEE International Conference Communications (ICC), pages 1–7, Paris, France, May 2017.Google Scholar
  11. 11.
    A. I. Pop, U. Raza, P. Kulkarni, and M. Sooriyabandara. Does bidirectional traffic do more harm than good in LoRaWAN based LPWA networks? In Proceedings of the IEEE Global Communication Conference (Globecom), pages 1–6, Singapore, Dec 2017.Google Scholar
  12. 12.
    F. V. D. Abeele, J. Haxhibeqiri, I. Moerman and J. Hoebeke, Scalability analysis of large-scale LoRaWAN networks in ns-3, IEEE Internet of Things Journal, Vol. 4, No. 6, pp. 2186–2198, 2017.CrossRefGoogle Scholar
  13. 13.
    M. Centenaro, L. Vangelista, and R. Kohno. On the impact of downlink feedback on LoRa performance. In Proceedings of the IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pages 1–6, Montreal, Canada, Oct 2017.Google Scholar
  14. 14.
    D. Bankov, E. Khorov, and A. Lyakhov. Mathematical model of LoRaWAN channel access. In Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks. (WoWMoM), pages 1–3, Macau, China, Jun 2017.Google Scholar
  15. 15.
    R. B. Sørensen, D. M. Kim, J. J. Nielsen and P. Popovski, Analysis of latency and MAC-layer performance for class A LoRaWAN, IEEE Wireless Communications Letters, Vol. 6, No. 5, pp. 566–569, 2017.CrossRefGoogle Scholar
  16. 16.
    S. Dawaliby, A. Bradai, Y. Pousset, and R. Riggio. Dynamic network slicing for LoRaWAN. In Proceedings of the International Conference on Network and Service Management (CNSM), pages 134–142, Rome, Italy, Nov 2018.Google Scholar
  17. 17.
    M. Cesana, A. Redondi, and J. Ortìn. A framework for planning LoRaWAN networks. In Proceedings of the IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pages 1–7, Bologna, Italy, Sept 2018.Google Scholar
  18. 18.
    J. Haxhibeqiri, I. Moerman, and J. Hoebeke. Low overhead scheduling of LoRa transmissions for improved scalability. IEEE Internet of Things Journal, Vol. 6, No. 2, pp. 3097–3109, 2018.CrossRefGoogle Scholar
  19. 19.
    M. Slabicki, G. Premsankar and M. Di Francesco. Adaptive configuration of LoRa networks for dense IoT deployments. In Proceedings of NOMS 2018–2018 IEEE/IFIP Network, Taipei, Taiwan, Operations and Management Symposium, pages 1–9, Taipei, Taiwan, Apr 2018.Google Scholar
  20. 20.
    K. Q. Abdelfadeel, V. Cionca, and D. Pesch. Fair adaptive data rate allocation and power control in LoRaWAN. In Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pages 14–15, Chania, Greece, Jun 2018.Google Scholar
  21. 21.
    SX1301 datasheet, Semtech Corporation, Jun 2014, v2.01.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronic SystemsAalborg UniversityAalborgDenmark
  2. 2.Department of Information EngineeringUniversity of PadovaPaduaItaly

Personalised recommendations