Advertisement

Development and evaluation of a short RIASEC interest inventory

  • Brandon MorganEmail author
  • Gideon P. de Bruin
Article
  • 23 Downloads

Abstract

This study set out to develop a short interest inventory based on Holland’s model of vocational personality types using items from the South African Career Interest Inventory (SACII). In study 1, we used 1000 responses to the SACII from an existing database to select 30 items for this interest inventory. Satisfactory reliability and structural validity were found for responses to these items. In study 2, we investigated the psychometric properties of these items on a sample of 183 participants. Satisfactory reliability and structural validity were again found. Implications and recommendations for research are discussed.

Keywords

Interests RIASEC Africa 

Résumé

Développement et évaluation de la version brève de l’inventaire des intérêts RIASEC Cette étude vise le développement de la version brève de l’inventaire des intérêts basé sur le modèle de Holland des types de personnalité vocationnelle, en utilisant les Items du South African Career Inventory (SACII). Dans la première étude (étude 1), nous avons utilisé 1 000 réponses au SACII provenant d’une base de données existante afin de sélectionner 30 items pour cet inventaire des intérêts. Les réponses à ces items ont montré une fiabilité et une validité structurelle satisfaisantes. Dans la deuxième étude (étude 2), nous avons étudié les propriétés psychométriques de ces items sur un échantillon de 183 participants. Cette procédure a démontré une fiabilité et une validité structurelle satisfaisantes. Les implications et les recommandations pour la recherche sont discutées.

Zusammenfassung

Entwicklung und Evaluation einer Kurzform des RIASEC Interessen Inventars In der vorliegenden Studie wurde eine Kurzform des Interessen Inventars entwickelt, welche auf Hollands Modell der beruflichen Persönlichkeitstypen basiert. Dafür wurden Items des South African Career Interest Inventory (SACII) verwendet. In Studie 1 wurden 1000 Antworten des SACII eines bestehenden Datensets verwendet, um 30 Items für dieses Interessen Invertar auszuwählen. Die Reliabilität und Strukturvalidität in Bezug auf diese Items sind zufriedenstellend. In Studie 2 wurden die psychometrischen Eigenschaften der Items an einer Stichprobe von 183 Versuchspersonen überprüft. Zufriedenstellende Werte für die Relaibilität und Strukturvalidität zeigten sich erneut. Implikationen und Empfehlungen für weiterführende Forschung werden diskutiert.

Resumen

Desarrollo y evaluaciónó de una version corta del inventario de intereses RIASEC Este estudio presenta el desrrollo de un corto inventario de inteses basado en el modelo de Holland sobre los tipos de personalidad vocacional usando items del South African Career Interest Inventory (SACII). En el estudio 1 se usaron 1000 respuestas al SACII disponibles en una base de datos para seleccionnar 30 items para este inventario de intereses. Se encontraron una confiabilidad satisfactoria y una validez structural para las respuestas a estos items. En el estudio 2 se investigaron las propiedades psicométricas de estos items con una muestra de 183 participantes. Por segunda vez se confirmó su satisfactoria confiabilidad y validez structural. Finalmente se debaten implicaciones y recommendaciones para la investigación

Notes

Supplementary material

10775_2019_9387_MOESM1_ESM.docx (344 kb)
Supplementary material 1 (DOCX 344 kb)

References

  1. Acton, G. A., & Revelle, W. (2002). Interpersonal personality measures show circumplex structure based on new psychometric criteria. Journal of Personality Assessment, 79(3), 446–471.  https://doi.org/10.1207/S15327752JPA7903_04.CrossRefGoogle Scholar
  2. Ambiel, R. A. M., Hauck-Filho, N., Barros, L. D. O., Martins, G. H., Abrahams, L., & De Fruyt, F. (2018). 18REST: A short RIASEC-interest measure for large-scale educational and vocational assessment. Psicologia: Reflexão e Crítica, 31(6), 1–11.  https://doi.org/10.1186/s41155-018-0086-z.Google Scholar
  3. Atitsogbe, K. A., Moumoula, I. A., Rochat, S., Antonietti, J.-P., & Rossier, J. (2018). Vocational interests and career indecision in Switzerland and Burkina Faso: Cross-cultural similarities and differences. Journal of Vocational Behavior, 107, 126–140.  https://doi.org/10.1016/j.jvb.2018.04.002.CrossRefGoogle Scholar
  4. Barrett, P. (2005). Shortform version 1.1. [Computer software]. Retrieved on 4 Feb 2015 from http://www.pbarrett.net/Shortform/sform.html#:1.
  5. Bartlett, C., Perera, H. N., & McIlveen, P. (2016). A short form of the Career Interest Test: 21-CIT. Journal of Career Assessment, 24(2), 397–409.CrossRefGoogle Scholar
  6. Bernstein, I. H., Garbin, C. P., & Teng, G. K. (1988). Applied multivariate analysis. New York: Springer.CrossRefGoogle Scholar
  7. Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  8. Browne, M. W. (1992). Circumplex models for correlation matrices. Psychometrika, 57, 469–497.  https://doi.org/10.1007/BF02294416.CrossRefGoogle Scholar
  9. Chen, P. D., & Simpson, P. A. (2015). Does personality matter? Applying Holland’s typology to analyze students’ self-selection into science, technology, engineering, and mathematics majors. The Journal of Higher Education, 86(5), 725–750.  https://doi.org/10.1080/00221546.2015.11777381.Google Scholar
  10. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334.  https://doi.org/10.1007/BF02310555.CrossRefGoogle Scholar
  11. Darcy, M., & Tracey, T. J. G. (2003). Integrating abilities and interests in career choice: Maximal versus typical assessment. Journal of Career Assessment, 11(2), 219–237.  https://doi.org/10.1177/1069072703011002007.CrossRefGoogle Scholar
  12. Darcy, M. U. A., & Tracey, T. J. G. (2007). Circumplex structure of Holland’s RIASEC interests across gender and time. Journal of Counseling Psychology, 54, 17–31.  https://doi.org/10.1037/0022-0167.54.1.17.CrossRefGoogle Scholar
  13. Donnellan, M. B., Oswald, F. L., Baird, B. M., & Lucas, R. E. (2006). The mini-IPIP scales: Tiny-yet-effective measures of the Big Five factors of personality. Psychological Assessment, 18(2), 192–203.CrossRefGoogle Scholar
  14. du Toit, R., & de Bruin, G. P. (2002). The structural validity of Holland’s R-I-A-S-E-C model of vocational personality types for young Black South African men and women. Journal of Career Assessment, 10, 62–77.  https://doi.org/10.1177/1069072702010001004.CrossRefGoogle Scholar
  15. Edwards, K. J., & Whitney, D. R. (1972). Structural analysis of Holland’s personality types using factor and configural analysis. Journal of Counseling Psychology, 19(2), 136–145.  https://doi.org/10.1037/h0032637.CrossRefGoogle Scholar
  16. Einarsdóttir, S., Rounds, J., & Su, R. (2010). Holland in Iceland revisited: An EMIC approach to evaluating U.S. vocational interest models. Journal of Counseling Psychology, 57, 361–367.  https://doi.org/10.1037/a0019685.CrossRefGoogle Scholar
  17. Fabrigar, L. R., Visser, P. S., & Browne, M. W. (1997). Conceptual and methodological issues in testing the circumplex structure of data in personality and social psychology. Personality and Social Psychology Review, 1, 184–203.  https://doi.org/10.1207/s15327957pspr0103_1.CrossRefGoogle Scholar
  18. Fouad, N. A. (1999). Validity evidence for interest inventories. In M. L. Savickas & A. R. Spokane (Eds.), Vocational interests: Meaning, measurement, and counseling use (pp. 193–210). Palo Alto, CA: Davies-Black.Google Scholar
  19. Grassi, M., Luccio, R., & Di Blas, L. (2010). CircE: An R implementation of Browne’s circular stochastic process model. Behavior Research Methods, 42, 55–73.  https://doi.org/10.3758/BRM.42.1.55.CrossRefGoogle Scholar
  20. Gurtman, M. B. (1997). Studying personality traits: The circular way. In R. Plutchik & H. R. Conte (Eds.), Circumplex models of personality and emotions (pp. 347–384). Washington, DC: American Psychological Association.Google Scholar
  21. Guttman, L. (1954). A new approach to factor analysis: The radix. In P. F. Lazarsfeld (Ed.), Mathematical thinking in the social sciences (pp. 258–348). Glencoe, IL: Free Press.Google Scholar
  22. Holland, J. L. (1997). Making vocational choices: A theory of vocational personalities and work environments (3rd ed.). Lutz, FL: Psychological Assessment Resources.Google Scholar
  23. Holland, J. L., Whitney, D. R., Cole, N. S., & Richards, Jr., J. M. (1969). An empirical occupational classification derived from a theory of personality and intended for practice and research. ACT Research Report No. 29. Iowa City, IA: American College Testing.Google Scholar
  24. Hubert, L., & Arabie, P. (1987). Evaluating order hypotheses within proximity matrices. Psychological Bulletin, 102, 172–178.  https://doi.org/10.1037/0033-2909.102.1.172.CrossRefGoogle Scholar
  25. Iliescu, D., Ispas, D., Sulea, C., & Ilie, A. (2015). Vocational fit and counterproductive work behaviors: A self-regulation perspective. Journal of Applied Psychology, 100(1), 21–39.  https://doi.org/10.1037/a0036652.CrossRefGoogle Scholar
  26. Kelley, K. (2018). MBESS: The MBESS R Package. R Package Version 4.4.3. https://CRAN.R-project.org/package=MBESS.
  27. Kelley, K., & Pornprasertmanit, S. (2016). Confidence intervals for population reliability coefficients: Evaluation of methods, recommendations, and software for composite measures. Psychological Methods, 21(1), 69–92.  https://doi.org/10.1037/a0040086.CrossRefGoogle Scholar
  28. Levy, P. (1967). The correction for spurious correlation in the evaluation of short-form tests. Journal of Clinical Psychology, 23, 84–86.  https://doi.org/10.1002/1097-4679(196701)23:1%3c84:AID-JCLP2270230123%3e3.0.CO;2-2.CrossRefGoogle Scholar
  29. Linacre, J. M. (2018). Winsteps® (Version 3.92.1) [Computer Software]. Beaverton, OR: Winsteps.com.Google Scholar
  30. Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.CrossRefGoogle Scholar
  31. Mintram, K. (2018). An investigation of gender differences in Holland’s circular/hexagonal model Master’s Thesis, University of Johannesburg, Johannesburg, South Africa.Google Scholar
  32. Morgan, B. (2014). Toward the development and evaluation of the South African Career Interest Inventory. Unpublished Doctoral Thesis, University of Johannesburg, Johannesburg, South Africa.Google Scholar
  33. Morgan, B., & de Bruin, G. P. (2018). Structural validity of Holland’s circumplex model of vocational personality types in Africa. Journal of Career Assessment, 26(2), 275–290.  https://doi.org/10.1177/1069072717692747.CrossRefGoogle Scholar
  34. Morgan, B., de Bruin, G. P., & de Bruin, K. (2015). Constructing Holland’s hexagon in South Africa: Development and initial validation of the South African Career Interest Inventory. Journal of Career Assessment, 23(3), 493–511.  https://doi.org/10.1177/1069072714547615.CrossRefGoogle Scholar
  35. Nagy, G., Trautwein, U., & Lüdtke, O. (2010). The structure of vocational interests in Germany: Different methodologies, different conclusions. Journal of Vocational Behavior, 76(2), 153–169.  https://doi.org/10.1016/j.jvb.2007.07.002.CrossRefGoogle Scholar
  36. Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory. New York: McGraw-Hill.Google Scholar
  37. Nye, C. D., Su, R., Rounds, J. B., & Drasgow, F. (2012). Vocational interests and performance: A quantitative summary of over 60 years of research. Perspectives on Psychological Science, 7(4), 384–403.  https://doi.org/10.1177/1745691612449021.CrossRefGoogle Scholar
  38. Nye, C. D., Su, R., Rounds, J., & Drasgow, F. (2017). Interest congruence and performance: Revisiting recent meta-analytic findings. Journal of Vocational Behavior, 98, 138–151.CrossRefGoogle Scholar
  39. Rabie, S. (2017). Investigating gender and racial differences on the South African Career Interest Inventory among secondary school learners in the Cape Winelands District. Unpublished Doctoral Dissertation, Stellenbosch University, South Africa.Google Scholar
  40. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Coenhagen: Danmarks Paedagogiske Institut.Google Scholar
  41. R Core Team. (2017). R: Foundation for statistical computing. Vienna, Austria: R Foundation. http://www.R-project.org/.
  42. Revelle, W. (2017). Procedures for personality and psychological research, Version 1.3.2. Evanston, IL: Northwestern University. http://CRAN.R-project.org/package=psych.
  43. Richins, M. L. (2004). The Material Values Scale: Measurement properties and development of a short form. Journal of Consumer Research, 31(1), 209–219.CrossRefGoogle Scholar
  44. Robins, R. W., Hendin, H. M., & Trzesniewski, K. H. (2001). Measuring global self-esteem: Construct validation of a single-item measure and the Rosenberg Self-Esteem Scale. Personality and Social Psychology Bulletin, 27(2), 151–161.CrossRefGoogle Scholar
  45. Rounds, J., Ming, C. W. J., Cao, M., Song, C., & Lewis, P. (2016). Development of an O* NET ® Mini Interest Profiler (Mini-IP) for mobile devices: Psychometric characteristics. Raleigh, NC: Department of Labor O* NET Resource Center.Google Scholar
  46. Rounds, J., & Tracey, T. J. (1996). Cross-cultural structural equivalence of RIASEC models and measures. Journal of Counseling Psychology, 43(3), 310–329.CrossRefGoogle Scholar
  47. Rounds, J., Tracey, T. J., & Hubert, L. (1992). Methods for evaluating vocational interest structural hypotheses. Journal of Vocational Behavior, 40(2), 239–259.  https://doi.org/10.1016/0001-8791(92)90073-9.CrossRefGoogle Scholar
  48. Stoll, G., Rieger, S., Lüdtke, O., Nagengast, B., Trautwein, U., & Roberts, B. W. (2017). Vocational interests assessed at the end of high school predict life outcomes assessed 10 years later over and above IQ and Big Five personality traits. Journal of Personality and Social Psychology, 113, 167–184.  https://doi.org/10.1037/pspp0000117.CrossRefGoogle Scholar
  49. Su, R. (2012). The power of vocational interests and interest congruence in predicting career success. Dissertation, University of Illinois at Urbana-Champaign, Urbana, Illinois.Google Scholar
  50. Tracey, T. J. G. (2000). Analysis of circumplex models. In H. E. Tinsley & S. D. Brown (Eds.), Handbook of applied multivariate statistics and mathematical modeling (pp. 642–664). New York: Academic Press.Google Scholar
  51. Tracey, T. J. G. (2010). Development of an abbreviated Personal Globe Inventory using item response theory: The PGI-Short. Journal of Vocational Behavior, 76, 1–15.CrossRefGoogle Scholar
  52. Tracey, T. J. G. (2012). Problems with single interest scales: Implications of the general factor. Journal of Vocational Behavior, 81(3), 378–384.CrossRefGoogle Scholar
  53. Tracey, T. J. G. (2016). RANDALL program to conduct the randomization test of hypothesized order relations. Retrieved on 24 Aug 2017 from http://tracey.faculty.asu.edu/computercov.html.
  54. Tracey, T. J. G., & Gupta, S. (2008). Interest assessment in an international context. In J. A. Athanasou & R. Van Esbroeck (Eds.), International handbook of career guidance (pp. 525–537). Netherlands: Springer.CrossRefGoogle Scholar
  55. Tracey, T. J., & Rounds, J. B. (1993). Evaluating Holland’s and Gati’s vocational-interest models: A structural meta-analysis. Psychological Bulletin, 113(2), 229–246.CrossRefGoogle Scholar
  56. Tracey, T. J., & Rounds, J. (1996). Contributions of the spherical representation of vocational interests. Journal of Vocational Behavior, 48(1), 85–95.  https://doi.org/10.1006/jvbe.1996.0009.CrossRefGoogle Scholar
  57. Van Iddekinge, C. H., Putka, D. J., & Campbell, J. P. (2011). Reconsidering vocational interests for personnel selection: The validity of an interest-based selection test in relation to job knowledge, job performance, and continuance intentions. Journal of Applied Psychology, 96, 13–33.  https://doi.org/10.1037/a0021193.CrossRefGoogle Scholar
  58. Volodina, A., Nagy, G., & Köller, O. (2015). Success in the first phase of the vocational career: The role of cognitive and scholastic abilities, personality factors, and vocational interests. Journal of Vocational Behavior, 91, 11–22.  https://doi.org/10.1016/j.jvb.2015.08.009.CrossRefGoogle Scholar
  59. Wheeler, J. J. (1992). Occupational interests of std. 10 pupils in black schools: A facet analysis. South African Journal for Education, 12, 240–245.Google Scholar
  60. Widaman, K. F., Little, T. D., Preacher, K. J., & Sawalani, G. M. (2011). On creating and using short forms of scales in secondary research. In K. H. Trzesniewski, M. B. Donnellan, & R. E. Lucas (Eds.), Secondary data analysis: An introduction for psychologists (pp. 39–62). Washington, DC: American Psychological Association.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Industrial Psychology and People ManagementUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Department of Industrial PsychologyStellenbosch UniversityStellenboschSouth Africa

Personalised recommendations