Advertisement

Fitting the STEM interests of middle school children into the RIASEC structural space

  • Toni BabarovićEmail author
  • Ivan Dević
  • Josip Burušić
Article

Abstract

This paper aims to explore middle school children's interest in science, technology, engineering, and mathematics (STEM) in the context of Holland’s model of vocational interests. The participants comprised 627 students aged 13 years, equally distributed by gender. The results showed that boys expressed stronger STEM interests than girls, with the most pronounced differences in engineering and technology. Most STEM interests fit along the People–Things dimension, while interest in science inclined toward the Ideas pole. We suggest that career counselors assess different STEM interests individually and invest efforts in retaining girls in STEM fields by providing gender-responsive career guidance.

Keywords

STEM interests RIASEC Middle school 

Résumé

Ajustement des intérêts vocationnels des élèves du premier cycle du secondaire des filières STEM à l’espace structurel RIASEC Cet article se propose d’explorer les intérêts des élèves du premier cycle du secondaire inscrits dans les filières STEM (Science, Technologie, Ingénierie et Mathématique) en utilisant le modèle des intérêts vocationnels de Holland. 627 élèves âgés de 13 ans et répartis équitablement par sexe ont participé à l’étude. Les résultats ont montré que les garçons manifestent plus d’intérêt pour les filières STEM que les filles, avec des différences marquées en Ingénierie et Technologie. La plupart des intérêts STEM s’ajustent à la dimension People-Things tandis que les intérêts du domaine Science s’ajustent à la dimension Ideas. Nous suggérons que les conseillers d’orientation évaluent séparément les intérêts des domaines STEM et fassent des efforts pour retenir les filles dans les filières STEM en leur offrant une orientation professionnelle sensible au genre.

Zusammenfassung

Passung der STEM-Interessen von Mittelschulkindern in den RIASEC-Strukturraum Die Studie untersucht die Interessen (STEM: Science, Technology, Engineering, Mathematics) an Naturwissenschaften, Technik, Ingenieurwesen und Mathematik von Mittelschülern/-innen im Kontext von Holland’s Modell der Berufsinteressen. Teilnehmer/innen waren 627 Schülerinnen und Schüler im Alter von 13 Jahren, gleichverteilt bezüglich Geschlecht. Es zeigte sich, dass Jungen stärkere Interessen in diesen Bereichen aufwiesen als Mädchen, dies mit den deutlichsten Unterschieden in Ingenieurwesen und Technik. Die meisten der vier Interessenbereiche verorten sich entlang der Dimension Menschen-Objekte, während die Naturwissenschaften zum Ideen-Pool neigen. Wir empfehlen, dass Berufs- und Laufbahnberater/innen die vier Interessenbereiche bei ihren Klientinnen und Klienten jeweils einzeln einschätzen und verstärkte Anstrengungen unternehmen, um Mädchen in diesen Bereichen zu halten, indem eine gleichstellungsorientierte und gendersensible Berufs- und Laufbahnberatung angeboten wird.

Resumen

Adaptando el cuestionario de intereses STEM para escolares de enseñanzas medias al espacio structural del RIASEC Este artículo tiene por objetivo explorar el cuestionario de intereses STEM (Ciencia, Tecnología, Ingenieria y Matemáticas) para alumnos de enseñanzas medias en el contexto del modelo de intereses vocacionales de Holland. La muestra la componen 627 alumnos de 13 años, con idéntica distribución por género. Los resultados muestran que los muchachos responden de forma mas contundente a los intereses del STEM que las muchachas, siendo las diferencias más destacadas Ingeniería y Tecnología. La mayoría de los intereses del STEM concuerdan con la dimension Gente-Cosas, mientras que los intereses de la Ciencia se decantan por el polo de las Ideas. Se sugiere que los orientadores profesionales asesoren separtando los diferentes intereses del STEM y se esfuercen en mantener implicadas a las muchachas en el STEM ofreciéndoles una orientación profesional adecuada a su género.

Notes

Acknowledgements

This research was supported by Croatian Science Foundation grant IP-09-2014-9250 -STEM career aspirations during primary schooling: A cohort-sequential longitudinal study of relations between achievement, self-competence beliefs, and career interests (JOBSTEM).

References

  1. Armstrong, P. I., Su, R., & Rounds, J. (2011). Vocational interests: The road less traveled. In A. Furnham (Ed.), The Wiley-Blackwell handbook of individual differences. Chichester: Wiley-Blackwell.  https://doi.org/10.1002/9781444343120.Google Scholar
  2. Blickenstaff, J. (2005). Women and science careers: leaky pipeline or gender filter? Gender and Education, 17(4), 369–386.  https://doi.org/10.1080/09540250500145072.CrossRefGoogle Scholar
  3. Borgen, F. H. (1986). New approaches to the assessment of interests. In W. B. Walsh & S. H. Osipow (Eds.), Advances in vocational psychology. The assessment of interests (Vol. 1, pp. 83–125). Hillsdale, NJ: Erlbaum.Google Scholar
  4. Broadley, K. (2015). Entrenched gendered pathways in science, technology, engineering and mathematics: engaging girls through collaborative career development. Australian Journal of Career Development, 24(1), 27–38.  https://doi.org/10.1177/1038416214559548.CrossRefGoogle Scholar
  5. Brotman, J. S., & Moore, F. M. (2008). Girls and science: A review of four themes in the science education literature. Journal of Research in Science Teaching, 45(9), 971–1002.  https://doi.org/10.1002/tea.20241.CrossRefGoogle Scholar
  6. Caprile, M., Palmén, R., Sanz, P., & Dente, G. (2015). Encouraging STEM studies: Labour market situation and comparison of practices targeted at young people in different member states. Brussels: European Parliament’s Committee on Employment and Social Affairs. European Commission.Google Scholar
  7. Černja, I., Babarović, T., & Šverko, I. (2017) Mogu li diferenciranost i konzistentnost interesa biti pokazatelji profesionalne zrelosti osnovnoškolaca? [Could differentiation and consistency of interests serve as career maturity indicators of elementary school children?] Društvena istraživanja, 26 (1), 41–58.  https://doi.org/10.5559/di.26.1.03
  8. Darcy, M., & Tracey, T. J. (2003). Integrating abilities and interests in career choice: Maximal versus typical assessment. Journal of Career Assessment, 11(2), 219–237.  https://doi.org/10.1177/1069072703011002007.CrossRefGoogle Scholar
  9. Day, S. X., & Rounds, J. (1998). Universality of vocational interest structure among racial and ethnic minorities. American Psychologist, 53(7), 728.  https://doi.org/10.1037/0003-066X.53.7.728.CrossRefGoogle Scholar
  10. Einarsdóttir, S., Rounds, J., Ægisdóttir, S., & Gerstein, L. H. (2002). The structure of vocational interests in Iceland: Examining Holland’s and Gati’s RIASEC models. European Journal of Psychological Assessment, 18(1), 85–95.  https://doi.org/10.1027//1015-5759.18.1.85.CrossRefGoogle Scholar
  11. European Commission. (2004). Europe needs more scientists: Report by the high level group on increasing human resources for science and technology. Brussels: European Commission.Google Scholar
  12. Gottfredson, L. S. (1996). Gottfredson‘s theory of circumscription and compromise. In D. Brown & L. Brooks (Eds.), Career choice and development (3rd ed., pp. 179–232). San Francisco, CA: Jossey-Bass.Google Scholar
  13. Gottfredson, G. D., & Holland, J. L. (1996). Dictionary of Holland occupational codes (3rd ed.). Odessa, FL: Psychological Assessment Resources.Google Scholar
  14. Hartung, P. J., Porfeli, E. J., & Vondracek, F. W. (2005). Child vocational development: A review and reconsideration. Journal of Vocational Behavior, 66, 385–419.  https://doi.org/10.1016/j.jvb.2004.05.006.CrossRefGoogle Scholar
  15. Hedrih, V. (2008). Structure of vocational interests in Serbia: Evaluation of the spherical model. Journal of Vocational Behavior, 73, 13–23.  https://doi.org/10.1016/j.jvb.2007.12.004.CrossRefGoogle Scholar
  16. Holland, J. L. (1959). A theory of vocational choice. Journal of Counseling Psychology, 6, 35–45.  https://doi.org/10.1037/h0040767.CrossRefGoogle Scholar
  17. Holland, J. L. (1985). The self directed search: Specimen set. Lutz, FL: Psychological Assessment Resources.Google Scholar
  18. Holland, J. L. (1997). Making vocational choices: A theory of vocational personalities and work environments (3rd ed.). Odessa, FL: Psychological Assessment Resources Inc.Google Scholar
  19. Hout, M., Smith, T.W. & Marsden, P.W. (2015). Prestige and Socioeconomic Scores for the 2010 Census Codes. (GSS Methodological Report No. 124). Retrieved from http://gss.norc.org/get-documentation/methodological-reports.
  20. Hubert, L., & Arabie, P. (1987). Evaluating order hypotheses within proximity matrices. Psychological Bulletin, 102, 172–178.  https://doi.org/10.1037/0033-2909.102.1.172.CrossRefGoogle Scholar
  21. Jones, L. E., & Koehly, L. M. (1993). Multidimensional scaling. In G. Kern & C. Lewis (Eds.), A handbook for data analysis in the behavioral sciences: Methodological issues (pp. 95–163). Hillsdale, NJ: Erlbaum.Google Scholar
  22. Kier, M. W., Blanchard, M. R., Osborne, J. W., & Albert, J. L. (2014). The development of the STEM career interest survey (STEM-CIS). Research in Science Education, 44(3), 461–481.  https://doi.org/10.1007/s11165-013-9389-3.CrossRefGoogle Scholar
  23. Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling (Vol. 11). Beverly Hills, CA: Sage.CrossRefGoogle Scholar
  24. Lippa, R. (1998). Gender-related individual differences and the structure of vocational interests: The importance of the people-things dimension. Journal of Personality and Social Psychology, 74, 996–1009.  https://doi.org/10.1037/0022-3514.74.4.996.CrossRefGoogle Scholar
  25. Low, K. S. D., & Rounds, J. (2007). Interest change and continuity from early adolescence to middle adulthood. International Journal for Educational and Vocational Guidance, 7(1), 23–36.  https://doi.org/10.1007/s10775-006-9110-4.CrossRefGoogle Scholar
  26. Low, K. S. D., Yoon, M., Roberts, B. W., & Rounds, J. (2005). The stability of vocational interests from early adolescence to middle adulthood: A quantitative review of longitudinal studies. Psychological Bulletin, 131(5), 713–737.  https://doi.org/10.1037/0033-2909.131.5.713.CrossRefGoogle Scholar
  27. Lubinski, D., & Benbow, C. P. (2006). Study of mathematically precocious youth after 35 years: Uncovering antecedents for the development of math-science expertise. Perspectives on Psychological Science, 1(4), 316–345.  https://doi.org/10.1111/j.1745-6916.2006.00019.x.CrossRefGoogle Scholar
  28. Mitchell, S., & Hoff, D. (2006). (Dis)Interest in science: How perceptions about grades may be discouraging girls. Electronic Journal of Science Education, 11(1), 10–21.Google Scholar
  29. Nagy, G., Trautwein, U., & Lüdtke, O. (2007). The structure of vocational interests in Germany: Different methodologies, different conclusions. Journal of Vocational Behavior.  https://doi.org/10.1016/j.jvb.2007.07.002.Google Scholar
  30. Olson, M. (2009). The logic of collective action (Vol. 124). Cambridge, MA: Harvard University Press.Google Scholar
  31. O*NET. The Occupational Information Network, US Department of Labor/Employment and Training. Retrieved from https://www.onetonline.org
  32. Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. London: The Nuffield Foundation.Google Scholar
  33. Prediger, D. J. (1982). Dimensions underlying Holland’s hexagon: Missing link between interests and occupations? Journal of Vocational Behavior, 21, 259–287.  https://doi.org/10.1016/0001-8791(82)90036-7.CrossRefGoogle Scholar
  34. Riegle-Crumb, C., Moore, C., & Ramos-Wada, A. (2011). Who wants to have a career in science or math? Exploring adolescents’ future aspirations by gender and race/ethnicity. Science Education, 95(3), 458–476.  https://doi.org/10.1002/sce.20431.CrossRefGoogle Scholar
  35. Rodríguez, C., Inda, M., & Fernández, M. C. (2016). Influence of social cognitive and gender variables on technological academic interest among Spanish high-school students: Testing social cognitive career theory. International Journal for Educational and Vocational Guidance, 16(3), 305–325.  https://doi.org/10.1007/s10775-015-9312-8.CrossRefGoogle Scholar
  36. Rottinghaus, P. J., Falk, N. A., & Park, C. J. (2018). Career assessment and counseling for STEM: A critical review. Career Development Quarterly, 66(1), 2–34.  https://doi.org/10.1002/cdq.12119.CrossRefGoogle Scholar
  37. Rounds, J. B. (1995). Vocational interests: Evaluating structural hypotheses. In D. Lubinski & R. V. Dawis (Eds.), Assessing individual differences in human behavior: New concepts, methods, and findings (pp. 177–232). Palo Alto, CA: Consulting Psychologists Press.Google Scholar
  38. Rounds, J., & Day, S. X. (1999). Describing, evaluating, and creating vocational interest structures. In M. L. Savickas & A. R. Spokane (Eds.), Vocational interests: Their meaning, measurement and use in counseling (pp. 103–133). Palo Alto, CA: Davies-Black.Google Scholar
  39. Rounds, J. B., & Tracey, T. J. G. (1993). Prediger’s dimensional representation of Holland’s RIASEC circumplex. Journal of Applied Psychology, 78, 875–890.  https://doi.org/10.1037/0021-9010.78.6.875.CrossRefGoogle Scholar
  40. Rounds, J., & Tracey, T. J. G. (1996). Cross-cultural structural equivalence of RIASEC models and measures. Journal of Counseling Psychology, 43, 310–329.  https://doi.org/10.1037/0022-0167.43.3.310.CrossRefGoogle Scholar
  41. Rounds, J. B., Tracey, T. J. G., & Hubert, L. (1992). Methods for evaluating vocational interest: Structural hypotheses. Journal of Vocational Behavior, 40, 239–259.  https://doi.org/10.1016/0001-8791(92)90073-9.CrossRefGoogle Scholar
  42. Sadler, P. M., Sonnert, G., Hazari, Z., & Tai, R. (2012). Stability and volatility of STEM career interest in high school: A gender study. Science Education, 96(3), 411–427.  https://doi.org/10.1002/sce.21007.CrossRefGoogle Scholar
  43. Shatkin, L. (2011). STEM careers inventory—Administrator’s guide. Indianapolis, IN: JIST Publishing.Google Scholar
  44. Sodano, S. M. (2011). Integrating vocational interests, competencies, and interpersonal dispositions in middle school children. Journal of Vocational Behavior, 79, 110–120.  https://doi.org/10.1016/j.jvb.2010.12.013.CrossRefGoogle Scholar
  45. Spector, P. E. (2006). Method variance in organizational research: Truth or urban legend? Organizational Research Methods, 9(2), 221–232.  https://doi.org/10.1177/1094428105284955.CrossRefGoogle Scholar
  46. Su, R., & Rounds, J. (2015). All STEM fields are not created equal: People and things interests explain gender disparities across STEM fields. Frontiers in psychology, 6, 189.  https://doi.org/10.3389/fpsyg.2015.00189.CrossRefGoogle Scholar
  47. Su, R., Rounds, J., & Armstrong, P. I. (2009). Men and things, women and people: A meta-analysis of sex differences in interests. Psychological Bulletin, 135, 859–884.  https://doi.org/10.3389/fpsyg.2015.00189.CrossRefGoogle Scholar
  48. Super, D. E. (1953). A theory of vocational development. American Psychologist, 8(5), 185–190.  https://doi.org/10.1037/h0056046.CrossRefGoogle Scholar
  49. Šverko, B. (Ed.). (1998). Vodič kroz zanimanja [Careers Guide]. Zagreb: Razbor.Google Scholar
  50. Šverko, I. (2008). Spherical model of interests in Croatia. Journal of Vocational Behavior, 72(1), 14–24.  https://doi.org/10.1016/j.jvb.2007.10.001.CrossRefGoogle Scholar
  51. Šverko, I., & Babarović, T. (2006). The validity of Holland’s theory in Croatia. Journal of Career Assessment, 14, 490–507.  https://doi.org/10.1177/1069072706288940.CrossRefGoogle Scholar
  52. Šverko, I., Babarović, T., & Međugorac, V. (2014). Pictorial assessment of interests: Development and evaluation of Pictorial and Descriptive Interest Inventory. Journal of Vocational Behavior, 84(3), 356–366.  https://doi.org/10.1016/j.jvb.2014.02.008.CrossRefGoogle Scholar
  53. Tai, R. T., Liu, C. Q., Maltese, A. V., & Fan, X. T. (2006). Planning early for careers in science. Science, 312, 1143–1144.  https://doi.org/10.1126/science.1128690.CrossRefGoogle Scholar
  54. Tracey, T. J. G. (2000). Analysis of circumplex models. In H. E. A. Tinsley & S. D. Brown (Eds.), Handbook of applied multivariate statistics and mathematical modeling (pp. 641–664). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  55. Tracey, T. J. G. (2001). The development of structure of interests in children: Setting the stage. Journal of Vocational Behavior, 59, 1–16.  https://doi.org/10.1006/jvbe.2000.1787.CrossRefGoogle Scholar
  56. Tracey, T. J. G. (2002a). Development of interests and competency beliefs: A 1-year longitudinal study of fifth- to eighth-grade students using the ICA-R and structural equation modeling. Journal of Counseling Psychology, 49, 148–163.  https://doi.org/10.1037/0022-0167.49.2.148.CrossRefGoogle Scholar
  57. Tracey, T. J. G. (2002b). Personal globe inventory: Measurement of the spherical model of interests and competence beliefs. Journal of Vocational Behavior, 60, 113–172.  https://doi.org/10.1006/jvbe.2001.181.CrossRefGoogle Scholar
  58. Tracey, T. J. G. (2010). Development of an abbreviated Personal Globe Inventory using item response theory: The PGI-Short. Journal of Vocational Behavior, 76(1), 1–15.  https://doi.org/10.1016/j.jvb.2009.06.007.CrossRefGoogle Scholar
  59. Tracey, T. J. G., & Caulum, D. (2015). Minimizing gender differences in children’s interest assessment: Development of the Inventory of Children’s Activities-3 (ICA-3). Journal of Vocational Behavior, 87, 154–160.  https://doi.org/10.1016/j.jvb.2015.01.004.CrossRefGoogle Scholar
  60. Tracey, T. J. G., & Robbins, S. B. (2005). Stability of interests across ethnicity and gender: A longitudinal examination of Grades 8 through 12. Journal of Vocational Behavior, 67, 335–364.  https://doi.org/10.1016/j.jvb.2004.11.003.CrossRefGoogle Scholar
  61. Tracey, T. J. G., Robbins, S. B., & Hofsess, C. D. (2005). Stability and change in adolescence: A longitudinal analysis of interests from grades 8 through 12. Journal of Vocational Behavior, 66, 1–25.  https://doi.org/10.1016/j.jvb.2003.11.002.CrossRefGoogle Scholar
  62. Tracey, T. J. G., & Rounds, J. B. (1993). Evaluating Holland’s and Gati’s vocational interest models: A structural meta-analysis. Psychological Bulletin, 113(2), 229–246.  https://doi.org/10.1037/0033-2909.113.2.229.CrossRefGoogle Scholar
  63. Tracey, T. J. G., & Ward, C. C. (1998). The structure of children’s interests and competence perceptions. Journal of Counseling Psychology, 45(3), 290.  https://doi.org/10.1037/0022-0167.45.3.290.CrossRefGoogle Scholar
  64. Usher, E. L. (2009). Sources of middle school students’ self-efficacy in mathematics: A qualitative investigation. American Educational Research Journal, 46(1), 275–314.  https://doi.org/10.3102/0002831208324517.CrossRefGoogle Scholar
  65. Watson, M., & McMahon, M. (2005). Children’s career development: A research review from a learning perspective. Journal of Vocational Behavior, 67, 119–132.  https://doi.org/10.1016/j.jvb.2004.08.011.CrossRefGoogle Scholar
  66. Watson, M., Nota, L., & McMahon, M. (2015). Evolving stories of child career development. International Journal for Educational and Vocational Guidance, 15, 175–184.  https://doi.org/10.1007/s10775-015-9306-6.CrossRefGoogle Scholar
  67. Woodcock, A., Graziano, W. G., Branch, S. E., Habashi, M. M., Ngambeki, I., & Evangelou, D. (2013). Person and thing orientations: Psychological correlates and predictive utility. Social Psychological and Personality Sciences, 3(2), 116–123.  https://doi.org/10.1177/1948550612444320.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Ivo Pilar Institute of Social SciencesZagrebCroatia

Personalised recommendations