Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Multi-Hop Cyclic Joint Remote State Preparation


We present a scheme for multi-hop cyclic joint remote state preparation by fusing the ideas of multi-hop teleportation and cyclic joint remote state preparation. To realize n −hop cyclic joint remote state preparation, we suppose that there are n + 2 subsystems. S1, S2 and S3 constitute a cycle in the first hop. Based on it, S3, S4 and S5 form another cycle as the second hop. Notably, S3 is an intermediate node used to connect these two hops. Then, we can obtain n cycles (hops) in the same way. Specially, if n + 2 is even, there is no way to constitute n cycles. To solve this problem, we propose two different schemes. Our schemes can realize the cyclic JRSP hop by hop via the intermediate node with n + 2 subsystems. Even without direct quantum channel to connect, these subsystems also can participate in the process of preparation through intermediate nodes. Furthermore, we consider the security of our scheme by analyzing inside attack and outside attack, and we found that the success of outside attack is not affected by the attacking time. Finally, we generalized a formula to calculate the efficiency of bidirectional JRSP, which is also suitable for cyclic JRSP.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

  2. 2.

    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

  3. 3.

    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

  4. 4.

    Bagherinezhad, S., Karimipour, V.: Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers. Phys. Rev. A 67(4), 044302 (2003)

  5. 5.

    Bai, C.M., Li, Z.H., Xu, T.T., Li, Y.M.: A generalized information theoretical model for quantum secret sharing. Int. J. Theor. Phys. 55(11), 4972–4986 (2016)

  6. 6.

    Wang, X.J., An, L.X., Yu, X.T., Zhang, Z.C.: Multilayer quantum secret sharing based on GHZ state and generalized Bell basis measurement in multiparty agents. Phys. Lett. A 381(38), 3282–3288 (2017)

  7. 7.

    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58(6), 4394 (1998)

  8. 8.

    Li, S.S., Nie, Y.Y., Hong, Z.H., Yi, X.J., Huang, Y.B.: Controlled teleportation using four-particle cluster state. Commun. Theor. Phys. 50(3), 633 (2008)

  9. 9.

    Nie, Y.Y., Hong, Z.H., Huang, Y.B., Yi, X.J., Li, S.S.: Non-maximally entangled controlled teleportation using four particles cluster states. Int. J. Theor. Phys. 48(5), 1485–1490 (2009)

  10. 10.

    Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum. Inf. 9(supp01), 389–403 (2011)

  11. 11.

    Long, L., Li, H., Zhou, P., Fan, C., Yin, C.: Multiparty-controlled teleportation of an arbitrary GHZ-class state by using a d-dimensional (N + 2)-particle nonmaximally entangled state as the quantum channel. Sci China Phys Mech. 54(3), 484–490 (2011)

  12. 12.

    Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54(1), 269–272 (2015)

  13. 13.

    Li, W., Zha, X. W., Qi, J.X.: Tripartite quantum controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55(9), 3927–3933 (2016)

  14. 14.

    Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Bidirectional controlled quantum teleportation in the three-dimension system. Int. J. Theor. Phys. 57(7), 2233–2240 (2018)

  15. 15.

    Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62 (1), 012313 (2000)

  16. 16.

    Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

  17. 17.

    Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90(5), 057901 (2003)

  18. 18.

    Xia, Y., Song, J., Song, H.: S.: Multiparty remote state preparation. J Phys B: At. Mol. Opt. Phys. 40(18), 3719 (2007)

  19. 19.

    Ma, S.Y., Chen, X.B., Luo, M.X., Zhang, R., Yang, Y.X.: Remote preparation of a four-particle entangled cluster-type state. Opt. Commun. 284(16), 4088–4093 (2011)

  20. 20.

    Zhang, Y.G., Dou, G., Zha, X.W.: Controlled remote state preparation of an arbitrary two-qubit state by using two sets of four-qubit GHZ states. Int. J. Theor. Phys. 57(2), 506–515 (2018)

  21. 21.

    Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63(4), 042303 (2001)

  22. 22.

    Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)

  23. 23.

    Zha, X.W., Song, H.Y., Ma, G.L.: Bidirectional swapping quantum controlled teleportation based on maximally entangled five-qubit state. arXiv:1006.0052 (2010)

  24. 24.

    Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52(10), 3790–3796 (2013)

  25. 25.

    Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52(11), 3870–3873 (2013)

  26. 26.

    Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14(9), 3441–3464 (2015)

  27. 27.

    Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state[J]. Quantum Inf. Process. 12(12), 3835–3844 (2013)

  28. 28.

    Li, Y., Jin, X.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments[J] . Quantum Inf. Process. 15(2), 929–945 (2016)

  29. 29.

    Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. process. 15(5), 2169–2179 (2016)

  30. 30.

    Zadeh, M.S.S., Houshmand, M., Aghababa, H.: Bidirectional quantum teleportation of a class of n-qubit states by using (2n + 2)-qubit entangled states as quantum channel. Int. J. Theor. Phys. 57(1), 175–183 (2018)

  31. 31.

    Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14(11), 4263–4278 (2015)

  32. 32.

    Zhang, Z.H., Shu, L., Mo, Z.W., Zheng, J., Ma, S.Y., Luo, M.X.: Joint remote state preparation between multi-sender and multi-receiver[J]. Quantum Inf. Process. 13(9), 1979–2005 (2014)

  33. 33.

    Zhang, C.Y., Bai, M.Q., Zhou, S.Q.: Cyclic joint remote state preparation in noisy environment. Quantum Inf. Process. 17(6), 146 (2018)

  34. 34.

    Wang, K., Yu, X.T., Lu, S.L., Gong, Y.X.: Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation[J]. Phys. Rev. A 89(2), 022329 (2014)

  35. 35.

    Yu, X.T., Xu, J., Zhang, Z.C.: Distributed wireless quantum communication networks. Chin. Phys. B 22(9), 090311 (2013)

  36. 36.

    Shi, H.L., Yu, X.T., Cai, X.F., Gong, Y.X., Zhang, Z.C.: Quantum information transmission in the quantum wireless multihop network based on Werner state. Chin. Phys. B 24(5), 050308 (2015)

  37. 37.

    Zhang, Z.H., Shu, L., Mo, Z.W.: Quantum teleportation and superdense coding through the composite W-Bell channel[J]. Quantum Inf. Process. 12(5), 1957–1967 (2013)

  38. 38.

    Zhang, Z.H., Wang, J.W., Sun, M.: Multihop Teleportation via the Composite of Asymmetric W State and Bell State[J]. Int. J. Theor. Phys. 57(12), 3605–3620 (2018)

  39. 39.

    Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states. Opt. Commun. 284(5), 1457–1460 (2011)

  40. 40.

    Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. Eur. Phys. Lett. 87(6), 60008 (2009)

  41. 41.

    Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J Phys B: At. Mol. Opt. Phys. 41(14), 145506 (2008)

  42. 42.

    Choudhury, B.S., Samanta, S.: Perfect joint remote state preparation of arbitrary six-qubit cluster-type states. Quantum Inf. process. 17(7), 175 (2018)

Download references


This work is supported by the National Natural Science Foundation of China (Grant No.11671284) and Sichuan Provincial Natural Science Foundation of China (Grant No.2015JY0002, 2017JY0197).

Author information

Correspondence to Ming-qiang Bai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Bai, M. Multi-Hop Cyclic Joint Remote State Preparation. Int J Theor Phys (2020). https://doi.org/10.1007/s10773-020-04405-4

Download citation


  • Multi-hop
  • Cyclic
  • Joint remote state preparation
  • Security
  • Efficiency