Advertisement

The Decoy-State Measurement-Device-Independent Quantum Key Distribution with Heralded Single-Photon Source

Abstract

Based on heralded single-photon source (HSPS), a decoy-state measurement-device-independent quantum key distribution (MDI-QKD) protocol is proposed in this paper. The MDI-QKD protocol mainly uses orbital angular momentum (OAM) states and pulse position modulation (PPM) technology to realize the coding of the signal states in heralded single-photon source. The three-intensity decoy states are used to avoid the attacks against the light source. Moreover, the formula of key generation rate is given by computing the lower bound of the yield of single-photon pairs and the upper bound of the error rate of single-photon pairs. Numerical simulation shows that the new MDI-QKD protocol has high key generation rate and low error rate. Moreover, the secure communication distance can be up to 450 km.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Bennett, C.H., Brassard, G.: In: Proceedings of IEEE international conference on computers, systems and signal processing, Bangalore, India, pp. 175–179. IEEE Press, New York (1984)

  2. 2.

    Kalra, M., Poonia, R.C.: In: Advances in intelligent systems and computing, Singapore, pp. 969–978. Springer, Singapore (2019)

  3. 3.

    Zhu, J.R., Li, J., Zhang, C.M., et al.: Quantum Inf. Process. 16, 238 (2017)

  4. 4.

    Guo, Y., Wang, X.X., Zhang, L., et al.: Int. J. Theor. Phys. 58, 209 (2019)

  5. 5.

    He, Y.F., Ma, W.P.: Quantum Inf. Process. 14, 3483 (2015)

  6. 6.

    Xu, G.B., Wen, Q.Y., Gao, F., et al.: Quantum Inf. Process. 13, 2587 (2014)

  7. 7.

    Zhang, C.M., Zhu, J.R., Wang, Q.: Eur. Phys. J. D. 72, 108 (2018)

  8. 8.

    He, Y.F., Ma, W.P.: Quantum Inf. Process. 15, 5023 (2016)

  9. 9.

    Yuen, H.P.: Quantum Inf. Process. 13, 2241 (2014)

  10. 10.

    Sun, S.H., Liang, L.M.: Appl. Phys. Lett. 101, 071107 (2012)

  11. 11.

    Makarov, V., Skaar, J.: Quantum Infor. Comput. 8, 0622 (2008)

  12. 12.

    Zhao, Y., Fung, C.H., Qi, B., et al.: Phys. Rev. A 78, 042333 (2008)

  13. 13.

    Makarov, V.: New J. Modern Opt. 11, 065003 (2009)

  14. 14.

    Barrett, J., Hardy, L., Kent, A.: Phys. Rev. Lett. 95, 010503 (2005)

  15. 15.

    Lo, H.K., Curty, M., Qi, B.: Phys. Rev. Lett. 108, 130503 (2012)

  16. 16.

    Liu, L., Guo, F.Z., Wen, Q.Y.: Sci. Rep.-UK. 7, 11370 (2017)

  17. 17.

    Zhang, C.M., Zhu, J.R., Wang, Q.: J. Lightwave Technol. 35, 4574 (2017)

  18. 18.

    Mao, C.C., Zhou, X.Y., Zhu, J.R., et al.: Opt. Express. 26, 13289 (2018)

  19. 19.

    Zhou, Y.H., Yu, Z.W., Wang, X.B.: Phys. Rev. A 93, 042324 (2016)

  20. 20.

    Li, N., Zhang, Y., Wen, S., et al.: Int. J. Theor. Phys. 57, 83 (2018)

  21. 21.

    Jiang, C., Yu, Z.W., Wang, X.B.: Phys. Rev. A 94, 062323 (2016)

  22. 22.

    Zhu, Z.D., Chen, D., Zhao, S.H.: Quantum Inf. Process. 18, 33 (2019)

  23. 23.

    Yin, H.L., Chen, T.Y., Yu, Z.W., et al.: Phys. Rev. Lett. 117, 190501 (2016)

  24. 24.

    Tang, Z.Y., Wei, K.J., Bedroya, O., et al.: Phys. Rev. A 93, 042308 (2016)

  25. 25.

    Da Silva, T.F., Vitoreti, D., Xavier, G.B., et al.: Phys. Rev. A 88, 052303 (2013)

  26. 26.

    Tang, Z.Y., Liao, Z.F., Xu, F.H., et al.: Phys. Rev. Lett. 112, 190503 (2014)

  27. 27.

    Tamaki, K., Lo, H.K., Fred, C.H.F., et al.: Phys. Rev. A 85, 042307 (2012)

  28. 28.

    Ma, X.F., Razavi, M.: Phys. Rev. A 86, 062319 (2012)

  29. 29.

    Chan, P., Slater, J.A., Lucio-Martinez, I., et al.: Opt. Express. 22, 12716 (2014)

  30. 30.

    Mafu, M., Dudley, A., Goyal, S.: Phys. Rev. A 88, 032305 (2013)

  31. 31.

    Wang, L., Zhao, S.M., Gong, L.Y., et al.: Chin. Phys. B 24, 120307 (2015)

  32. 32.

    wang, L., Zhou, Y.Y., Zhou, X.J.: Optoelectr. Lett. 14, 138 (2018)

  33. 33.

    Wang, Q., Wang, X.B.: Phys. Rev. A 88, 052332 (2013)

  34. 34.

    Zhou, Y.Y., Zhou, X.J., Su, B.B.: Optoelectr. Lett. 12, 0148 (2016)

  35. 35.

    Zhou, X.Y., Zhang, C.H., Guo, G.C., et al.: Quantum Inf. Process. 15, 2455 (2016)

  36. 36.

    Zhou, X.Y., Zhang, C.H., Zhang, C.M., et al.: Phys. Rev. A 96, 052337 (2017)

  37. 37.

    Zhang, C.H., Zhang, C.M., Guo, G.C., et al.: Opt. Express. 26, 4219 (2018)

  38. 38.

    Li, Q., Zhu, C.H., Ma, S.Q., et al.: Int. J. Theor. Phys. 57, 2192 (2018)

  39. 39.

    Gao, F., Qin, S.J., Huang, W., et al.: Sci. China-Phys. Mech. Astron. 62, 070301 (2019)

  40. 40.

    He, Y.F., Ma, W.P.: Quantum Inf. Process. 16, 252 (2017)

  41. 41.

    He, Y.F., Ma, W.P.: Quantum Inf. Process. 18, 4 (2019)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61802302, 61772418).

Author information

Correspondence to Ye-Feng He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Y., Ma, W. The Decoy-State Measurement-Device-Independent Quantum Key Distribution with Heralded Single-Photon Source. Int J Theor Phys (2020) doi:10.1007/s10773-019-04376-1

Download citation

Keywords

  • Quantum cryptography
  • Measurement-device-independent quantum key distribution
  • Heralded single-photon source
  • Orbital angular momentum
  • Pulse position modulation