Quantum Decoherence of Gaussian Steering and Entanglement in Hawking Radiation and Thermal Bath

  • Shu-Min Wu
  • Hao-Sheng ZengEmail author


We study the effects of Hawking radiation and bath temperature on quantum steering and entanglement for a two-mode Gaussian state exposed in the background of a black hole and immersed in the two independent thermal baths. We find that both the effects can destroy the quantum steering and entanglement. Quantum steering always exists sudden death for any Hawking temperature and any bath temperature, but entanglement does not in zero-temperature thermal bath. Both the Hawking radiation and the asymmetry of thermal baths can induce the asymmetry of quantum steering, but the latter effect is much weaker than the former. An unintuitive result is that the observer who stays in the Hawking radiation or in the thermal bath with higher temperature has more stronger steerability than the other one. We also find that Hawking radiation and thermal noise can change the asymptotic behavior of steering and entanglement versus the squeezing parameter.


Gaussian steering Gaussian entanglement Hawking radiation Thermal bath 



This work is supported by the National Natural Science Foundation of China (Grant No. 11275064), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20124306110003), and the Construct Program of the National Key Discipline.


  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Bell, J. S.: On the Einstein Podolsky Rosen paradox. Physics (Long Island City) 1, 195–200 (1964)MathSciNetGoogle Scholar
  3. 3.
    Masanes, L.: All bipartite entangled states are useful for information processing. Phys. Rev. Lett. 96, 150501 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Werner, R. F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Phil. Soc. 31, 555–563 (1935)ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Schrödinger, E.: Probability relations between separated systems. Proc. Camb. Phil. Soc. 32, 446–452 (1936)ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Wiseman, H. M., Jones, S. J., Doherty, A. C.: Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Skrzypczyk, P., Navascués, M., Cavalcanti, D.: Quantifying Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 112, 180404 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Walborn, S. P., Salles, A., Gomes, R. M., Toscano, F., Souto Ribeiro, P. H.: Revealing hidden Einstein-Podolsky-Rosen nonlocality. Phys. Rev. Lett. 106, 130402 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Bowles, J., Vértesi, T., Quintino, M. T., Brunner, N.: One-way Einstein-Podolsky-Rosen Steering. Phys. Rev. Lett. 112, 200402 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    He, Q. Y., Gong, Q. H., Reid, M. D.: Classifying directional gaussian entanglement, Einstein-Podolsky-Rosen steering, and discord. Phys. Rev. Lett. 114, 060402 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Li, C. M., Chen, K., Chen, Y. N., Zhang, Q., Chen, Y. A., Pan, J. W.: Genuine high-order Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 115, 010402 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Marciniak, M., Rutkowski, A., Yin, Z., Horodecki, M., Horodecki, R.: Unbounded violation of quantum steering inequalities. Phys. Rev. Lett. 115, 170401 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    He, Q. Y., Rosales-Zárate, L., Adesso, G., Reid, M. D.: Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 115, 180502 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Sainz, A. B., Brunner, N., Cavalcanti, D., Skrzypczyk, P., Vertesi, T.: Postquantum steering. Phys. Rev. Lett. 115, 190403 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kogias, I., Lee, A. R., Ragy, S., Adesso, G.: Quantification of gaussian quantum steering. Phys. Rev. Lett. 114, 060403 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Peres, A., Terno, D. R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Fuentes-Schuller, I., Mann, R. B.: Alice falls into a black hole: Entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Alsing, P. M., Fuentes-Schuller, I., Mann, R. B., Tessier, T. E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Adesso, G., Fuentes-Schuller, I., Ericsson, M.: Continuous-variable entanglement sharing in noninertial frames. Phys. Rev. A 76, 062112 (2007)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Aspachs, M., Adesso, G., Fuentes, I.: Optimal quantum estimation of the Unruh-Hawking effect. Phys. Rev. Lett 105, 151301 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Wang, J., Pan, Q., Jing, J.: Entanglement of coupled massive scalar field in background of dilaton black hole. Phys. Lett. B 602, 202 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Hosler, D. J., van de Bruck, C., Kok, P.: Information gap for classical and quantum communication in a Schwarzschild spacetime. Phys. Rev. A 85, 042312 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Friis, N., Lee, A. R., Truong, K., Sabín, C., Solano, E., Johansson, G., Fuentes, I.: Relativistic quantum teleportation with superconducting circuits. Phys. Rev. Lett. 110, 113602 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Doukas, J., Brown, E. G., Dragan, A., Mann, R. B.: Entanglement and discord: Accelerated observations of local and global modes. Phys. Rev. A 87, 012306 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Su, D., Ralph, T. C.: Quantum communication in the presence of a horizon. Phys. Rev. D 90, 084022 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Wang, J., Jing, J., Fan, H.: Quantum discord and measurement-induced disturbance in the background of dilaton black holes. Phys. Rev. D 90, 025032 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Ahmadi, M., Bruschi, D. E., Fuentes, I.: Quantum metrology for relativistic quantum fields. Phys. Rev. D 89, 065028 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Ahmadi, M., Smith, A. R. H., Dragan, A.: Communication between inertial observers with partially correlated reference frames. Phys. Rev. A 92, 062319 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Chȩcińska, A., Dragan, A.: Communication between general-relativistic observers without a shared reference frame. Phys. Rev. A 92, 012321 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Blasco, A., Garay, L. J., Martín-Benito, M., Martín-Martínez, E.: Violation of the strong huygens principle and timelike signals from the early universe. Phys. Rev. Lett. 114, 141103 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Richter, B., Omar, Y.: Degradation of entanglement between two accelerated parties: Bell states under the Unruh effect. Phys. Rev. A 92, 022334 (2015)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Wu, S. M., Zeng, H. S.: Multipartite quantum coherence andmonogamy for Dirac fields subject to Hawking radiation. Quantum Inf. Process. 18, 305 (2019)ADSCrossRefGoogle Scholar
  35. 35.
    Wu, S. M., Zeng, H. S., Liu, T. H.: Quantum coherence of Gaussian states in curved spacetime. Results in Physics 14, 102398 (2019)CrossRefGoogle Scholar
  36. 36.
    Hawking, S. W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Hawking, S. W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460 (1976)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Terashima, H.: Entanglement entropy of the black hole horizon. Phys. Rev. D 61, 104016 (2000)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Wang, J., Cao, H., Jing, J., Fan, H.: Gaussian quantum steering and its asymmetry in curved spacetime. Phys. Rev. D 93, 125011 (2016)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Sabin, C., Adesso, G.: Generation of quantum steering and interferometric power in the dynamical Casimir effect. Phys. Rev. A 92, 042107 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N. J., Ralph, T. C., Shapiro, J. H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Simon, R.: Peres-Horodecki Separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    Duan, L. M., Giedke, G., Cirac, J. I., Zoller, P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000)ADSzbMATHCrossRefGoogle Scholar
  44. 44.
    Adesso, G., Serafini, A., Illuminati, F.: Extremal entanglement and mixedness in continuous variable systems. Phys. Rev. A 70, 022318 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    Birrell, N. D., Davies, P. C. W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)zbMATHCrossRefGoogle Scholar
  46. 46.
    Fabbri, A., Navarro-Salas, J.: Modeling Black Hole Evaporation. Imperial College Press, London (2005)zbMATHCrossRefGoogle Scholar
  47. 47.
    Bruschi, D. E., Dragan, A., Fuentes, I., Louko, J.: Particle and antiparticle bosonic entanglement in noninertial frames. Phys. Rev. D 86, 025026 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    Gorini, V., Kossakowski, A., Sudarshan, E. C. G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Heinosaari, T., Holevo, A. S., Wolf, M. M.: The semigroup structure of Gaussian channels. Quantum Inform. Comput. 10, 0619 (2010)MathSciNetGoogle Scholar
  51. 51.
    Isar, A., Sandulescu, A., Scutaru, H., Stefanescu, E., Scheid, W.: Open quantum systems. Int. J. Mod. Phys. E 3, 635 (1994)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Ahno, D.: Unruh effect as a noisy quantum channel. Phys. Rev. A 98, 022308 (2018)ADSCrossRefGoogle Scholar
  53. 53.
    Sandulescu, A., Scutaru, H.: Open quantum systems and the damping of collective modes in deep inelastic collisions. Ann. Phys. 173, 277 (1987)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Alijanzadeh, H., Isar, A., Akbari-kourbolagh, Y.: Quantum fidelity of two-mode Gaussian states in the two-reservoir model. Rom. Rep. Phys 68, 1 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of EducationHunan Normal UniversityChangshaChina
  2. 2.Synergetic Innovation Center for Quantum Effects and ApplicationsHunan Normal UniversityChangshaChina
  3. 3.Department of PhysicsHunan Normal UniversityChangshaChina

Personalised recommendations