Advertisement

Dynamic Cooling of a Micromechanical Membrane in a Double-cavity Optomechanical System

  • Qingxia MuEmail author
  • Chao Lang
  • Peiying Lin
Article

Abstract

We theoretically present an optomechanical cooling scheme of a double optical modes which are coupled with the same mechanical resonator by the radiation pressure to analyze the dynamical cooling of a micromechanical membrane. The mean value of the total second-order moments are obtained by solving linearized quantum Langevin equations. We discuss the effect of the significant parameters of the system on the instantaneous-state mean phonon number of the oscillator cooled to the ground state under the resolved sideband regime. Furthermore, the steady-state cooling limit is also studied and the results show that the final mean phonon number splits into two minimum values when the detunings of the two cavity modes are different. Moreover, the minimal value of the final mean phonon number is much less than the case of equal driving detuning. By regulating the detunings of the optical modes from the corresponding driving fields and increasing the coupling strengths, the cooling effect will be optimized obviously.

Keywords

Optomechanical system Ground-state cooling Quantum optics 

Notes

Acknowledgments

Qingxia Mu thanks Xinyu Zhao for valuable discussions. This work was supported by the Fundamental Research Funds for the Central Universities (2018MS056) and National Natural Science Foundation of China (NSFC) (11605055, 11574082).

References

  1. 1.
    Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Meystre, P.: A short walk through quantum optomechanics. Ann. Phys. (Berlin) 525, 215 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Regal, C.A., Teufel, J.D., Lehnert, K.W.: Frequency and Q factor control of nanomechanical resonators. Nat. Phys. 4, 974 (2008)CrossRefGoogle Scholar
  4. 4.
    Peng, H.B., Chang, C.W., Aloni, S., Yuzvinsky, T.D., Zettl, A.: Ultrahigh frequency nanotube resonators. Phys. Rev. Lett. 97, 087203 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Naik, A.K., Hanay, M.S., Hiebert, W.K., Feng, X.L., Roukes, M.L.: Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol. 4, 445 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Suh, J., Weinstein, A.J., Lei, C.U., et al.: Mechanically detecting and avoiding the quantum fluctuations of a microwave field. Science 344, 1262 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Hertzberg, J.B., Rocheleau, T., Ndukum, T., et al.: Back-action-evading measurements of nanomechanical motion. Nat. Phys. 10, 213 (2010)CrossRefGoogle Scholar
  8. 8.
    Palomaki, T.A., Teufel, J.D., Simmonds, R.W., Lehnert, K.W.: Entangling mechanical motion with microwave fields. Science 342, 710 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Wang, Y.D., Clerk, A.A.: Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 110, 253601 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Mari, A., Eisert, J.: Opto- and electro-mechanical entanglement improved by modulation. New J. Phys. 14, 1 (2012)CrossRefGoogle Scholar
  11. 11.
    Hofer, S.G., Wieczorek, W., Aspelmeyer, M., Hammerer, K.: Quantum entanglement and teleportation in pulsed cavity optomechanics. Phys. Rev. A 84, 052327 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Qin, W., Miranowicz, A., Li, P.B., Lü, X.Y., You, J.Q., Nori, F.: Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification. Phys. Rev. Lett. 120, 093601 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Brooks, D.W.C., Botter, T., Schreppler, S., et al.: Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature 488, 476 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Purdy, T.P., Yu, P.L., Peterson, R.W., Kampel, N.S., Regal, C.A.: Strong optomechanical squeezing of light. Phys. Rev. X 3, 031012 (2013)Google Scholar
  15. 15.
    Safavi-Naeini, A.H., Gröblacher, S., Hill, J.T., et al.: Squeezed light from a silicon micromechanical resonator. Nature 500, 185 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Szorkovszky, A., Brawley, G.A., Doherty, A.C., Bowen, W.P.: Strong thermomechanical squeezing via weak measurement. Phys. Rev. Lett. 110, 184301 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Asjad, M., Agarwal, G.S., Kim, M.S., Tombesi, P., Di Giuseppe, G., Vitali, D.: Robust stationary mechanical squeezing in a kicked quadratic optomechanical system. Phys. Rev. A 89, 023849 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Pontin, A., Bonaldi, M., Borrielli, A., Cataliotti, F.S., Marino, F., Prodi, G.A., Serra, E., Marin, F.: Squeezing a thermal mechanical oscillator by stabilized parametric effect on the optical spring. Phys. Rev. Lett. 112, 023601 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Gigan, S., Bhm, H.R., Paternostro, M., Blaser, F., Langer, G., Hertzberg, J.B., Schwab, K.C., Bauerle, D., Aspelmeyer, M., Zeilinger, A.: Self-cooling of a micromirror by radiation pressure. Nature 444, 67 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: Back-action at the mesoscale. Science 321, 1172 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Wang, Y., Li, C., Sampuli, E.M., Song, J., Jiang, Y.Y., Xia, Y.: Enhancement of coherent dipole coupling between two atoms via squeezing a cavity mode. Phys. Rev. A 99, 023833 (2019)ADSCrossRefGoogle Scholar
  22. 22.
    Genes, C., Vitali, D., Tombesi, P., Gigan, S., Aspelmeyer, M.: Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Li, Y., Wu, L.A., Wang, Z.D.: Fast ground-state cooling of mechanical resonators with time-dependent optical cavities. Phys. Rev. A 83, 043804 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Karuza, M., Molinelli, C., Galassi, M., Biancofiore, C., Natali, R., Tombesi, P., Di, Giuseppe, Di Giuseppe, G., Vitali, D.: Optomechanical sideband cooling of a thin membrane within a cavity. New J. Physics 14, 095015 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Triana, J.F., Estrada, A.F., Pachón, L.A.: Ultrafast optimal sideband cooling under non-Markovian evolution. Phys. Rev. Lett. 116, 183602 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Kleckner, D., Bouwmeester, D.: Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Corbitt, T., Wipf, C., Bodiya, T., Ottaway, D., Sigg, D., Smith, N., Whitcomb, S., Mavalvala, N.: Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Poggio, M., Degen, C.L., Mamin, H.J., Rugar, D.: Role of spin noise in the detection of nanoscale ensembles of nuclear spins. Phys. Rev. Lett. 99, 250601 (2007)CrossRefGoogle Scholar
  29. 29.
    Barzanjeh, S., Naderi, M.H., Soltanolkotabi, M.: Back-action ground-state cooling of a micromechanical membrane via intensity-dependent interaction. Phys. Rev. A 84, 023803 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Restrepo, J., Gabelli, J., Ciuti, C., Favero, I.: Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator. Comptes Rendus Physique 12, 860 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Yasir, K.A., Zhuang, L., Liu, W.M.: Spin-orbit-coupling-induced backaction cooling in cavity optomechanics with a Bose-Einstein condensate. Phys. Rev. A 95, 013810 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    Xu, M., Jäger, S.B., Schütz, S., Cooper, J., Morigi, G., Holland, M.J.: Supercooling of atoms in an optical resonator. Phys. Rev. Lett. 116, 153002 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    Liu, Y.C., Xiao, Y.F., Luan, X., Wong, C.W.: Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys. Rev. Lett. 110, 153606 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Lai, D.G., Zou, F., Hou, B.P., Xiao, Y.F., Liao, J.Q.: Simultaneous cooling of coupled mechanical resonators in cavity optomechanics. Phys. Rev. A 98, 023860 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    Huan, T.T., Zhou, R.G., Lan, H.: Dynamic entanglement transfer in a double-cavity optomechanical system. Phys. Rev. A 92, 022301 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Liu, Y.L., Liu, Y.X.: Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity. Phys. Rev. A 96, 023812 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematics and Physics DepartmentNorth China Electric Power UniversityBeijingChina

Personalised recommendations