Advertisement

Quantum Speed Limit of a Two-Level System Interacting with Multiple Bosonic Reservoirs

  • Ping-Hui Hu
  • Gao-Feng Peng
  • Zhi He
  • Qiong WangEmail author
Article

Abstract

A physical model for a two-level atom simultaneously coupled to multiple Bosonic reservoirs is investigated. The explicit expression of quantum speed limit is obtained. Analysis show that as long as the number of reservoirs satisfies certain conditions, whether it is strong coupling or weak coupling, the system will show a non-Markovian effect. Numerical simulation show that the non-Markovian effect of the system increases with the increase of reservoir number. Further investigation shows that the stronger the non-Markovian effect is, the faster the evolution acceleration of quantum system will be.

Keywords

Quantum speed limit Non-Markovian effect Multiple bosonic reservoirs 

Notes

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grant No. 61605019), the China Postdoctoral Science Foundation (Grant No. 2017M622582), the Research Foundation of Education Bureau of Hunan Province, China (Grants No. 18B601,16B177 and 16B023). Qiong Wang is supported by the Program of Hehua Excellent Young Talents, Changsha Normal University.

References

  1. 1.
    Mandelstam, L., Tamm, I.: . J. Phys. 9, 249 (1945)Google Scholar
  2. 2.
    Margolus, N., Levitin, L.B.: . Physica D 120, 188 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Pfeifer, P.: . Phys. Rev. Lett. 70, 3365 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Pfeifer, P., Frohlich, J.: . Rev. Mod. Phys. 67, 759 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Giovannetti, V., Lloyd, S., Maccone, L.: . Phys. Rev. A 67, 052109 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Luo, S.: . Physica D 189, 1 (2004)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Jones, P.J., Kok, P.: . Phys. Rev. A 82, 022107 (2010)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Zwierz, M.: . Phys. Rev. A 86, 016101 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Deffner, S., Lutz, E.: . J. Phys. A: Math. Theor. 46, 335302 (2013)CrossRefGoogle Scholar
  10. 10.
    Taddei, M.M., Escher, B.M., Davidovich, L., Matos Filho, R.L.: . Phys. Rev. Lett. 110, 050402 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Campo, A., Egusquiza, I.L., Plenio, M.B., Huelga, S.F.: . Phys. Rev. Lett. 110, 050403 (2013)CrossRefGoogle Scholar
  12. 12.
    Deffner, S., Lutz, E.: . Phys. Rev. Lett. 111, 010402 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Cimmarusti, A.D., Yan, Z., Patterson, B.D., Corcos, L.P., Orozco, L.A., Deffner, S.: . Phys. Rev. Lett. 114, 233602 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Zhang, Y.J., Han, W., Xia, Y.J., Cao, J.P., Fan, H.: . Sci. Rep. 4, 4890 (2014)CrossRefGoogle Scholar
  15. 15.
    Sun, Z., Liu, J., Ma, J., Wang, X.: . Sci. Rep. 5, 8444 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Xu, Z.Y.: . New J. Phys. 18, 073005 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Jing, J., Wu, L.A., del Campo, A.: . Sci. Rep. 6, 38149 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Xu, Z.Y., Zhu, S.Q.: . Chin. Phys. Lett. 31, 020301 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Xu, Z.Y., Luo, S., Yang, W.L., Liu, C., Zhu, S.Q.: . Phys. Rev. A 89, 012307 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Zhang, Y.J., Han, W., Xia, Y.J., Cao, J.P., Fan, H.: . Phys. Rev. A 91, 032112 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Liu, C., Xu, Z.Y., Zhu, S.Q.: . Phys. Rev. A 91, 022102 (2015)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Marvian, I., Lidar, D.A.: . Phys. Rev. Lett. 115, 210402 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Marvian, I., Spekkens, R.W., Zanardi, P.: . Phys. Rev. A 93, 052331 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Han, W., Jiang, K.X., Zhang, Y.J., Xia, Y.J.: . Chin. Phys. B 24, 120304 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Liu, H.B., Yang, W.L., An, J.H., Xu, Z.Y.: . Phys. Rev. A 93, 020105 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Martens, C.C.: . J. Chem. Phys. 133, 241101 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Martens, C.C.: . J. Phys. B: At. Mol. Opt. Phys. 45, 154008 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Lombardo, F.C., Villar, P.I.: . Phys. Rev. A 87, 032338 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Lombardo, F.C., Villar, P.I.: . Phys. Rev. A 91, 042111 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Yu, W.J., Wei, Y.B., Li, H., Li, L., Zou, J., S, B.: . Int. J Theor. Phys. 55, 4785 (2016)CrossRefGoogle Scholar
  31. 31.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  32. 32.
    Breuer, H.P., Laine, E.M., Piilo, J.: . Phys. Rev. Lett. 103, 210401 (2009)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Wissmann, S., Karlsson, A., Laine, E.M.: . Phys. Rev. A 86, 062108 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ping-Hui Hu
    • 1
  • Gao-Feng Peng
    • 2
  • Zhi He
    • 3
  • Qiong Wang
    • 2
    Email author
  1. 1.College of Information and Mechatronical EngineeringHunan International Economics UniversityChangshaChina
  2. 2.College of Elementary EducationChangsha Normal UniversityChangshaChina
  3. 3.College of Mathematics and Physics ScienceHunan University of Arts and ScienceChangdeChina

Personalised recommendations