Advertisement

On Extension of Joint Distribution Functions on Quantum Logics

Abstract

The problem of extension of joint distribution functions (s-maps) on quantum logics is studied. Necessary and sufficient conditions for the extension of bivariate s-maps to trivariate s-maps are given. However, it is shown that these conditions are not sufficient for extending trivariate s-maps to 4-variate s-maps.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Notes

  1. 1.

    pn(a,...,a) = pn(π(a,..., 1L)) = pn(π(a,..., 1L, 1L)) = pn(π(a, 1L,..., 1L)), where π is arbitrary permutation

References

  1. 1.

    Al-Adilee, A. M.: A note to a common cause in quantum logic. Slovak Journal of Civil Engineering XVIII(4), 24–29 (2010). https://doi.org/10.2478/v10189-010-0019-z

  2. 2.

    Al-Adilee, A. M., Nánásiová, O.: Copula and s-map on a quantum logic, vol. 179. https://doi.org/10.1016/j.ins.2009.08.011 (2009)

  3. 3.

    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Annals Math. 37, 823–843 (1936). https://doi.org/10.2307/1968621

  4. 4.

    Bohdalová, M., Kalina, M., Nánásiová, O.: Granger causality from a different viewpoint. Informační, bulletin České statistické společnosti 27(2), 23–28 (2016)

  5. 5.

    Dvurečenskij, A., Pulmannová, S.: Connection between joint distribution and compatibility. Reports on Mathematical Physics 19, 349–359 (1984). https://doi.org/10.1016/0034-4877(84)90007-7

  6. 6.

    Dvurečenskij, A., Pulmannová, S.: New trends in quantum structures. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava (2000)

  7. 7.

    Garg, A., Mermin, N. D., Farkas’s, Lemma: the nature of reality statistical implications of quantum correlations. Foundation of Physsics 14(1), 1–39 (1984). https://doi.org/10.1007/BF00741645

  8. 8.

    Garola, C.: An epistemic interpretation of quantum probability via contextuality. Foundations of Science. https://doi.org/10.1007/s10699-018-9560-4 (2018)

  9. 9.

    Greechie, R.J.: Orthomodular lattices admitting no states. Journal of Combinatorial Theory Series A 10, 119–132 (1971). https://doi.org/10.1016/0097-3165(71)90015-X

  10. 10.

    Gleason, A.: Measures on the closed subspaces of a Hilbert space. Indiana Univ. Math. J. 6(4), 885–893 (1957). https://doi.org/10.1512/iumj.1957.6.56050

  11. 11.

    Gudder, S.: Joint distributions of observables. J. Math. Mech. 18, 325–335 (1968)

  12. 12.

    Kalmbach, G.: Orthomodular lattices. Academic Press, London (1983)

  13. 13.

    Khrennikov, A., Basieva, I.: Possibility to agree on disagree from quantum information and decision making. J. Math. Psychol. 62(3), 1–5 (2014). https://doi.org/10.1016/j.jmp.2014.09.003

  14. 14.

    Khrennikov, A.: CHSH inequality: quantum probabilities as classical conditional probabilities. Foundation of Physics 45, 711–725 (2015). https://doi.org/10.1007/s10701-014-9851-8

  15. 15.

    Khrennikov, A., Alodjants, A.: Classical (local and contextual) probability model for Bohm-Bell type experiments: no-signaling as independence of random variables. Entropy 21(2), 157 (2019). https://doi.org/10.3390/e21020157

  16. 16.

    Malvestuto, F.M.: Existence of extensions and product extensions for discrete probability distributions. Discret. Math. 69, 61–77 (1988). https://doi.org/10.1016/0012-365X(88)90178-1

  17. 17.

    Nánásiová, O.: Map for simultaneous measurements for a quantum logic. Int. J. Theor. Phys. 42, 1889–1903 (2003)

  18. 18.

    Nánásiová, O.: Principle conditioning. Int. J. Theor. Phys. 43, 1383–1395 (2004)

  19. 19.

    Nánásiová, O., Kalina, M.: Calculus for non-compatible observables, construction through conditional states. Int. J. Theor. Phys. 54, 506–518 (2014). https://doi.org/10.1007/s10773-014-2243-1

  20. 20.

    Nánásiová, O., Khrennikov, A.: Representation theorem of observables on a quantum system. Int. J. Theor. Phys. 45, 469–482 (2006)

  21. 21.

    Nánásiová, O., Khrennikov, A.: Compatibility and marginality. Int. J. Theor. Phys. 46, 1083–1095 (2007)

  22. 22.

    Nánásiová, O., Pulmannová, S.: S-map and tracial states. Inf. Sci. 179, 515–520 (2009). https://doi.org/10.1016/j.ins.2008.07.032

  23. 23.

    Nánásiová, O., Valášková, L.: Maps on a quantum logic. Soft. Comput. 14, 1047–1052 (2010). https://doi.org/10.1007/s00500-009-0483-4

  24. 24.

    Nánásiová, O., Valášková, L.: Marginality and triangle inequality. Int. J. Theor. Phys. 49(12), 3199–3208 (2010)

  25. 25.

    Nánásiová, O., Valášková, L., Čerňanová, V.: Probability measures and projections on quantum logics. In: Kulczycki, P., et al. (eds.) ITSRCP 2018. Advances in intelligent systems and computing, 945. https://doi.org/10.1007/978-3-030-18058-4_25. Springer, Cham (2020)

  26. 26.

    Nielsen, R.B.: An introduction to copulas. Springer, New York (1999)

  27. 27.

    Pavičić, M.: Exhaustive generation of orthomodular lattices with exactly one nonquantum state. Reports on Mathematical Physics 64, 417–428 (2009). https://doi.org/10.1016/S0034-4877(10)00005-4

  28. 28.

    Pták, P., Pulmannová, S.: Orthomodular structures as quantum logics. Kluwer, Dortrecht and Veda, Bratislava (1991)

  29. 29.

    Pulmannová, S.: Relative compatibility and joint distributions of observables. Foundation of Physics 10, 641–653 (1980)

  30. 30.

    Pykacz, J., Fra̧ckiewicz, P: The problem of conjunction and disjunction in quantum logics. Int. J. Theor. Phys. 56(12), 3963–3970 (2017). https://doi.org/10.1007/s10773-017-3402-y

  31. 31.

    Pykacz, J., Valášková, L., Nánásiová, O.: Bell-type inequalities for bivariate maps on orthomodular lattices. Foundation of Physics 45, 900–913 (2015). https://doi.org/10.1007/s10701-015-9906-5

  32. 32.

    Sozzo, S.: Conjunction and negation of natural concepts: A quantum-theoretic modeling. J. Math. Psychol. 66, 83–102 (2015). https://doi.org/10.1016/j.jmp.2015.01.005

  33. 33.

    Svozil, K.: Faithful orthogonal representations of graphs from partition logics. arXiv:1810.10423

  34. 34.

    Vlach, M.: Conditions for the existence of solutions of the three-dimensional planar transportation problem. Discrete Appplied Mathematics 13, 61–78 (1986). https://doi.org/10.1016/0166-218X(86)90069-7

Download references

Acknowledgments

O. N. and K. Č. thank for the support of the VEGA grant no. 1/0159/17, L’. V. thanks for the support of the VEGA grant no. 1/0420/15, and J. P. thanks Polish National Agency for Academic Exchange for the support which allowed him to visit Slovak Technical University in Bratislava, no. PPN/BIL/2018/1/87/SVK/UMOWA/1.

Author information

Correspondence to Ol’ga Nánásiová.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nánásiová, O., Pykacz, J., Valášková, L. et al. On Extension of Joint Distribution Functions on Quantum Logics. Int J Theor Phys 59, 274–291 (2020) doi:10.1007/s10773-019-04322-1

Download citation

Keywords

  • Quantum logic
  • Quantum probability
  • Joint distribution
  • S-map
  • State