Advertisement

Quantumness of Bosonic Field States

  • Shunlong LuoEmail author
  • Yue Zhang
Article

Abstract

In bosonic fields, coherent states are widely regraded as the most classical (the least quantum) states for several operational and physical reasons. In this context, a natural question arises: How classical/quantum is a state? This fundamental issue has been pursued from various perspectives, and many significant measures of quantumness (nonclassicality) have been proposed, each with its own unique merit and usage. However, there is no universal measure of quantumness, and it is desirable to characterize quantumness from different angles. In this work, by exploiting the Wigner-Yanase skew information and the resolution of identity induced by coherent states of bosonic fields, we introduce a measure of quantumness which possesses several remarkable properties: Easy computation, information-theoretic meaning, physical relevance. We reveal its connection with Renyi 2-entropy of Husimi distributions of square root of quantum states, illustrate its significance in capturing quantumness through prototypical examples, and show that it is indeed a bona fide measure of quantumness.

Keywords

Bosonic fields Nonclassical states Quantumness Wigner-Yanase skew information 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China, Grant Nos. 11875317, the National Center for Mathematics and Interdisciplinary Sciences, CAS, Grant No. Y029152K51.

References

  1. 1.
    Dirac, P.A.M.: The Principle of Quantum Mechanics. Oxford Univ. Press, Oxford (1930)zbMATHGoogle Scholar
  2. 2.
    Heisenberg, W.H.: The Physical Principles of Quantum Theory. Univ. Chicago Press, Chicago (1930)zbMATHGoogle Scholar
  3. 3.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge Univ. Press, Cambrige (2000)zbMATHGoogle Scholar
  4. 4.
    Haroche, S., Raimond, J.M.: Exploring the Quantum. Oxford Univ. Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  5. 5.
    Mandel, L.: . Phys. Scr. T12, 34 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)zbMATHCrossRefGoogle Scholar
  7. 7.
    Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge Univ. Press, Cambridge (1997)CrossRefGoogle Scholar
  8. 8.
    Leonhardt, U.: Measuring the Quantum State of Light. Cambridge Uinv. Press, Cambridge (1997)zbMATHGoogle Scholar
  9. 9.
    Dodonov, V.V., Man’ko, V.I.: Theory of Nonclassical States of Light. Taylor & Francis, London (2003)Google Scholar
  10. 10.
    Vogel, W., Welsch, D.-G.: Quantum Optics. Wiley-VCH, Weinheim (2006)zbMATHCrossRefGoogle Scholar
  11. 11.
    Schleich, W.: Quantum Optics in Phase Space. Wiley, Hoboken (2015)zbMATHGoogle Scholar
  12. 12.
    Schrödinger, E.: . Naturwissenschaften 14, 664 (1926)ADSCrossRefGoogle Scholar
  13. 13.
    Iwata, G.: . Prog. Theor. Phys. 6, 216 (1951)ADSCrossRefGoogle Scholar
  14. 14.
    Klauder, J.R.: . Ann. Phys. 11, 123 (1960)ADSCrossRefGoogle Scholar
  15. 15.
    Glauber, R.J.: . Phys. Rev. 131, 2766 (1963)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Sudarshan, E.C.G.: . Phys. Rev. Lett. 10, 277 (1963)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Zurek, W.H., Habib, S., Paz, J.P.: . Phys. Rev. Lett. 70, 1187 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    Klauder, J.R., Skagerstam, B.: Coherent States. World Scientific, Singapore (1985)zbMATHCrossRefGoogle Scholar
  19. 19.
    Perelomov, A.: Generalized Coherent States and Their Applications. Springer, Berlin (1986)zbMATHCrossRefGoogle Scholar
  20. 20.
    Zhang, W.-M., Feng, D.H., Gilmore, R.: . Rev. Mod. Phys. 62, 867 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    Gazeau, J.-P.: Coherent States in Quantum Physics. Wiley-VCH, Berlin (2009)CrossRefGoogle Scholar
  22. 22.
    Hillery, M.: . Phys. Rev. A 35, 725 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    Marian, P., Marian, T.A., Scutaru, H.: . Phys. Rev. Lett. 88, 153601 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    Giraud, O., Braun, P., Braun, D.: . New J. Phys. 12, 063005 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Mari, A., Kieling, K., Nielsen, B.M., Polzik, E.S., Eisert, J.: . Phys. Rev. Lett. 106, 010403 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Sperling, J., Vogel, W.: . Phys. Scr. 90, 074024 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Nair, R.: . Phys. Rev. 95, 063835 (2017)CrossRefGoogle Scholar
  28. 28.
    Lemos, H.C.F., Almeida, A.C.L., Amaral, B., Oliveira, A.C.: . Phys. Lett. A 382, 823 (2018)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Lee, C.T.: . Phys. Rev. A 44, R2775 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    Lütkenhaus, N., Barnett, S.M.: . Phys. Rev. A 51, 3340 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    Richter, T. h., Vogel, W.: . Phys. Rev. Lett 89, 283601 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Ryl, S., Sperling, J., Agudelo, E., Mraz, M., Köhnke, S., Hage, B., Vogel, W.: . Phys. Rev. A 92(R), 011801 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Kenfack, A., Zyczkowski, K.: . J. Opt. B 6, 396 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    Shchukin, E., Richter, T.h., Vogel, W.: . Phys. Rev. A 71, 011802(R) (2005)ADSCrossRefGoogle Scholar
  35. 35.
    Gehrke, C., Sperling, J., Vogel, W.: . Phys. Rev. A 86, 052118 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Asbóth, J. K., Calsamiglia, J., Ritsch, H.: . Phys. Rev. Lett. 94, 173602 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    Yadin, B., Binder, F.C., Thompson, J., Narasimhachar, V., Gu, M., Kim, M.S.: . Phys. Rev. X 8, 041038 (2018)Google Scholar
  38. 38.
    Kwon, H., Tan, K.C., Volkoff, T., Jeong, H.: . Phys. Rev. Lett. 122, 040503 (2019)ADSCrossRefGoogle Scholar
  39. 39.
    Park, J., Lu, Y., Lee, J., Shen, Y., Zhang, K., Zhang, S., Zubairy, M.S., Kim, K., Nha, H.: . Proc. Nat. Acad. Sci. USA 114, 891 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    De Bievre, S., Horoshko, D.B., Patera, G., Kolobov, M.I.: . Phys. Rev. Lett. 122, 080402 (2019)CrossRefGoogle Scholar
  41. 41.
    Wigner, E.P., Yanase, M.M.: . Proc. Nat. Acad. Sci. USA 49, 910 (1963)ADSCrossRefGoogle Scholar
  42. 42.
    Connes, A., Störmer, E.: . J. Funct. Anal. 28, 187 (1978)CrossRefGoogle Scholar
  43. 43.
    Luo, S.: . Phys. Rev. Lett. 91, 180403 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    Luo, S.: . Proc. Amer. Math. Soc. 132, 885 (2003)CrossRefGoogle Scholar
  45. 45.
    Luo, S.: . Phys. Rev. A 72, 042110 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    Luo, S., Sun, Y.: . Phys. Rev. A 96, 022130 (2017)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Sun, Y., Mao, Y., Luo, S.: . Europhys. Lett. 118, 60007 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    Luo, S., Sun, Y.: . Phys. Rev. A 98, 012113 (2018)ADSCrossRefGoogle Scholar
  49. 49.
    Marvian, I., Spekkens, R.W., Zanardi, P.: . Phys. Rev. A 93, 052331 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    Lieb, E.H., Ruskai, M.B.: . Phys. Rev. Lett. 30, 434 (1973)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    van Dam, W., Hayden, P.: arXiv:quant-ph/0204093 (2002)
  52. 52.
    König, R., Renner, R., Schaffner, C.: . IEEE Trans. Inf. Theory 55, 4337 (2009)CrossRefGoogle Scholar
  53. 53.
    Adesso, G., Girolami, D., Serafini, A.: . Phys. Rev. Lett. 109, 190502 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: . J. Math. Phys. 54, 122203 (2013)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Frank, R.L., Lieb, E.H.: . J. Math. Phys. 54, 122201 (2013)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Lostaglio, M., Jennings, D., Rudolph, T.: . Nat. Commun. 6, 6383 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    Titulaer, U.M., Glauber, R.J.: . Phys. Rev. 140, B674 (1965)CrossRefGoogle Scholar
  58. 58.
    Bialynicka-Birula, Z.: . Phys. Rev. 173, 1207 (1968)ADSCrossRefGoogle Scholar
  59. 59.
    Stoler, D.: . Phys. Rev. D 4, 6570 (1970)Google Scholar
  60. 60.
    Buzek, V., Vidiella-Barranco, A., Knight, P.L.: . Phys. Rev. A 45, 6570 (1992)ADSCrossRefGoogle Scholar
  61. 61.
    Gerry, C.C.: . J. Mod. Optics 40, 1053 (1993)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    Haroche, S.: . Rev. Mod. Phys. 85, 1083 (2013)ADSCrossRefGoogle Scholar
  63. 63.
    Wineland, D.J.: . Rev. Mod. Phys. 85, 1103 (2013)ADSCrossRefGoogle Scholar
  64. 64.
    Zurek, W.H.: . Nature (London) 412, 712 (2001)ADSCrossRefGoogle Scholar
  65. 65.
    Agarwal, G.S., Pathak, P.K.: . Phys. Rev. A 70, 053813 (2004)ADSCrossRefGoogle Scholar
  66. 66.
    Toscano, F., Dalvit, D.A.R., Davidovich, L., Zurek, W.H.: . Phys. Rev. A 73, 023803 (2006)ADSCrossRefGoogle Scholar
  67. 67.
    Kim, M.S., Son, W., Buzek, V., Knight, P.L.: . Phys. Rev. A 65, 032323 (2002)ADSCrossRefGoogle Scholar
  68. 68.
    Wang, X.-B.: . Phys. Rev. A 66, 024303 (2002)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    Jiang, Z., Lang, M.D., Caves, C.M.: . Phys. Rev. A 88, 044301 (2013)ADSCrossRefGoogle Scholar
  70. 70.
    Vogel, W., Sperling, J.: . Phys. Rev. A 89, 052302 (2014)ADSCrossRefGoogle Scholar
  71. 71.
    Girolami, D., Souza, A.M., Giovannetti, V., Tufarelli, T., Filgueiras, J.G., Sarthour, R.S., Soares-Pinto, D.O., Oliveira, I.S., Adesso, G.: . Phys. Rev. Lett. 112, 210401 (2014)ADSCrossRefGoogle Scholar
  72. 72.
    Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: . Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    Killoran, N., Steinhoff, F.E.S., Plenio, M.B.: . Phys. Rev. Lett. 116, 080402 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina
  2. 2.School of Mathematical SciencesUniversity of the Chinese Academy of SciencesBeijingChina

Personalised recommendations