International Journal of Theoretical Physics

, Volume 59, Issue 1, pp 187–199 | Cite as

Quantum Information Splitting of Arbitrary Two-Qubit State Via a Five-Qubit Cluster State and a Bell-State

  • Yaming Yang
  • Dongfen LiEmail author
  • Mingzhe Liu
  • Jinlian Chen


We propose a scheme for Quantum Information Splitting of Arbitrary Two-qubit State via a Five-qubit Cluster State and a Bell-state as the quantum channels. There exist a sender (Alice) and two receivers (Bob and Charlie), who share a seven-qubit cluster state as the quantum channel. Alice performs a Bell-state measurements (BSMs) on her qubit pairs, Alice reveals the results to Bob and Charlie via a classical channel. If it is impossible without the help from Charlie for Bob to reconstruct the original information. Charlie performs GHZ-state measurements on his particles and informs Bob about the result. Bob will perform unitary operations to reconstruct the original state information. This scheme is tested for different eavesdropping attacks, of which eavesdropping is easy to detect. In addition, we compared the agreement, such as the number of particles in the program itself, the method of measurement and the efficiency of measurement, etc. All of those prove the innovation of the comprehensive measurement method in this experiment. Overall, we can get the conclusion from the comparison that the scheme is more stable and robust in terms of transmission efficiency and security.


Five-qubit cluster state Quantum information splitting GHZ-state measurement Bell-state measurement Quantum communication protocol comparison 



This work is supported by National Natural Science Foundation of China (61802033), Postdoctoral Research Foundation of China (2018 M643453), Science and Technology projects in Sichuan Province (2019YJ0543), also supported by the Opening Project of Guangdong Provincial Key Laboratory of Information Security Technology (2017B030314131).


  1. 1.
    Ma R. L: Quantum cryptographic communication [M]. Beijing: Science press, 2006: 41-42Google Scholar
  2. 2.
    Bennett C H, Brassard G , Crepeau C, et al.: Teleporting an Unknown Quantum State Via Dual Classical and Einstein-Podolsky-Rosen Channels[C]// Quantum Entanglement and Quantum Information--Proceedings of CCAST (World Laboratory) Workshop. (1999)Google Scholar
  3. 3.
    Bhaktavatsala Rao, D.D., Ghosh, S., Panigrahi, P.K.: Generation of entangled channels for perfect teleportation using multielectron quantum dots[J]. Phys. Rev. A. 78(4), 042328 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Lin, X.M., Zhou, Z.W., Xue, P., et al.: Scheme for implementing quantum dense coding via cavity QED[J]. Phys. Lett. A. 313(5–6), 351–355 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Yuanhua, L.I., Junchang, L., Yiyou, N.: Quantum Information Splitting by Using a Genuinely Entangled Six-qubit State and Bell-state Measurements[J]. Guangzi Xuebao/Acta Photonica Sinica. 40(2), 307–310 (2011)CrossRefGoogle Scholar
  6. 6.
    Nie, Y.Y., Li, Y.H., Liu, J.C., et al.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states[J]. Quantum Inf. Process. 10(3), 297–305 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Li, D.F., Wang, R.J., Zhang, F.L., et al.: Quantum information splitting of a two-qubit bell state using a four-qubit entangled state[J]. Chin. Phys. C. 54(4), 3229–3237 (2015)zbMATHGoogle Scholar
  8. 8.
    Nie, Y., Li, Y., Liu, J., et al.: Quantum information splitting of an arbitrary three-qubit state by using a genuinely entangled five-qubit state and a Bell-state.[J]. Quantum Inf. Process. 11(2), 563–569 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hillery, M., Vladimír, B., André, B., et al.: Quantum secret sharing[M]. Phys. Rev. A. 59(3), 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Nie, Y.Y., Li, Y.H., Liu, J.C., et al.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states[J]. Quantum Inf. Process. 10(3), 297–305 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting[J]. Phys. Rev. A. 59(1), 162–168 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret[J]. Phys. Rev. Lett. 83(3), 648–651 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    Li, M.L., Liu, J.J., Hong, W.L., et al.: Four - particle entangled state is used to realize single particle information splitting[J]. Acta Sinica Quant. Optic. 19(2), 141–145 (2013)Google Scholar
  14. 14.
    Murao, M., Jonathan, D., Plenio, M.B., et al.: Quantum telecloning and multiparticle entanglement[J]. Phys. Rev. A. 59(1), 156–161 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Yang, C.P., Chu, S.I., Han, S., et al.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement[J]. Phys. Rev. A. 70(2), 022329 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Li, Y.H., Li, X.L., Sang, M.H., et al.: Splitting unknown two-Qubit state using five-Qubit entangled state[J]. Int. J. Theor. Phys. 53(1), 111–115 (2014)CrossRefGoogle Scholar
  17. 17.
    Yin, A., Wang, J.: Quantum Information Splitting of Arbitrary Three-qubit State by Using Five-qubit Cluster state and GHZ-state[J]. Int. J. Theor. Phys. 55(12), 1–15 (2016)CrossRefGoogle Scholar
  18. 18.
    Chen, Y.: Splitting an Arbitrary Two-ubit State Via a Seven-qubit Maximally Entangled State[J]. Int. J. Theor. Phys. 54(5), 1–4 (2014)ADSGoogle Scholar
  19. 19.
    Hu, Y.A., Ye, Z.Q.: Controlled quantum bidirectional teleportation and its security based on GHZ state[J]. J. Opt. 43(8), 182–186 (2014)Google Scholar
  20. 20.
    Wang, X.P., Sang, M.H.: Splitting an Arbitrary Three-Qubit State by Using Seven-Qubit Composite GHZ-Bell State[J]. Int. J. Theor. Phys. 53(3), 1064–1069 (2014)CrossRefGoogle Scholar
  21. 21.
    Nie, Y.Y., Sang, M.H., Li, Y.H., et al.: Three-Party Quantum Information Splitting of[J]. Int. J. Theor. Phys. 50(5), 1367–1371 (2011)CrossRefGoogle Scholar
  22. 22.
    Sang, M.H., Dai, H.L.: Quantum Splitting a Two-qubit State with a Genuinely Entangled Five-qubit State[J]. Int. J. Theor. Phys. 53(8), 2708–2711 (2014)CrossRefGoogle Scholar
  23. 23.
    Panigrahi, P.K., Karumanchi, S., Muralidharan, S.: Minimal classical communication and measurement complexity for quantum information splitting of a two-qubit state[J]. Pramana. 73(3), 499–504 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chengdu University of TechnologyChengduChina
  2. 2.State Key Laboratory of Geohazard Prevention and Geoenvironment ProtectionSichuanChina

Personalised recommendations