Advertisement

Adiabatic Shortcut and Quantum Correlation in Composite System

  • Jing YangEmail author
  • Yong Zhang
Article

Abstract

The adiabatic shortcut, which can achieve the adiabatic effect by a non-adiabatic process, has drawn considerable attention in the context of quantum control recently. In this work, we study the adiabatic shortcut for an interacting spin-1/2 composite system and the quantum correlation between the subsystems. The results show that, the Berry phases and the transitionless quantum driving (TQD) Hamiltonian for the composite system and the subsystems are related to the correlation between the two subsystems. By study the cases of no correlation and large correlation, the quantum entanglement and the Berry phases of the subsystem, as well as their influences on the TQD Hamiltonian are discussed. This means that, we can modify the correlation between the subsystem to control the adiabatic shortcuts of the subsystems. This provides a feasible way to study the adiabatic shortcuts of the composite system and its subsystems.

Keywords

Adiabatic shortcut Geometric phase Quantum entanglement Composite system 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (11747155 and 11647166), Science and Technology Foundation of Education Department of Jilin Province of China (JJKH20181162KJ).

References

  1. 1.
    Rezek, Y., Kosloff, R.: Irreversible performance of a quantum harmonic heat engine. New J. Phys. 8(5), 83 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Berry, M.V.: Transitionless quantum driving. J. Phys. A Math 42(36), 365303 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chen, X., Torrontegui, E., Muga, J.G.: Lewis-riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Zhang, X.Y., Teng, J.H., Yi, X.X.: Berry phase in coupled two-level systems. Mod. Phys. Lett. B 27(12), 1350088 (2013).  https://doi.org/10.1142/S0217984913500887 ADSCrossRefGoogle Scholar
  5. 5.
    Chen, X., Ruschhaupt, A., Schmidt, S., del Campo, A., Guéry-Odelin, D., Muga, J.G.: Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    del Campo, A.: Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111, 100502 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    del Campo, A.: Frictionless quantum quenches in ultracold gases: a quantum-dynamical microscope. Phys. Rev. A 84, 031606 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Chen, Y.H., Shi, Z.C., Song, J., Xia, Y.: Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system. Phys. Rev. A 97(2), 023841 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    Lu, M., Xia, Y., Shen, L.T., Song, J., An, N.B.: Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Phys. Rev. A 89(1), 012326 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Chen, Y.H., Xia, Y., Wu, Q.C., Huang, B.H., Song, J.: Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms. Phys. Rev. A 93(5), 052109 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Deffner, S., Jarzynski, C., del Campo, A.: Classical and quantum shortcuts to adiabaticity for scale-invariant driving. Phys. Rev. X 4, 021013 (2014)Google Scholar
  12. 12.
    Jarzynski, C., Deffner, S., Patra, A., Subaşı, Y.: Fast forward to the classical adiabatic invariant. Phys. Rev. E 95, 032122 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity. Phys. Rev. Lett. 117(7), 070401 (2016)Google Scholar
  14. 14.
    Jarzynski, C.: Generating shortcuts to adiabaticity in quantum and classical dynamics. Phys. Rev. A 88, 040101 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Deng, J., Wang, Q.h., Liu, Z., Hänggi, P., Gong, J.: Boosting work characteristics and overall heat-engine performance via shortcuts to adiabaticity: Quantum and classical systems. Phys. Rev. E 88, 062122 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Xiao, G., Gong, J.: Suppression of work fluctuations by optimal control: An approach based on Jarzynski’s equality. Phys. Rev. E 90(5), 052132 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Chen, S.Y., Zhang, Y.N., Yang, J., Liu, H.D., Sun, H.Y.: Quantum-Classical Correspondence for adiabatic shortcut in two- and Three-Level atoms. Int. J. Theor. Phys. pp. 836–843 (2019)Google Scholar
  18. 18.
    Takahashi, K.: Transitionless quantum driving for spin systems. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 87(6), 1–9 (2013)CrossRefGoogle Scholar
  19. 19.
    Karzig, T., Pientka, F., Refael, G., Von Oppen, F.: Shortcuts to non-Abelian braiding. Phys. Rev. B 91(20), 1–5 (2015)Google Scholar
  20. 20.
    Torosov, B.T., Della Valle, G., Longhi, S.: Non-hermitian shortcut to adiabaticity. Phys. Rev. A 87(5), 1–5 (2013)CrossRefGoogle Scholar
  21. 21.
    Torosov, B.T., Della Valle, G., Longhi, S.: Non-hermitian shortcut to stimulated Raman adiabatic passage. Phys. Rev. A 89(6), 1–6 (2014)CrossRefGoogle Scholar
  22. 22.
    Yi, X., Wang, L., Zheng, T.: Berry phase in a composite system. Phys. Rev. Lett. 92(15), 1–4 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sjöqvist, E., Rahaman, R., Basu, U., Basu, B.: Berry phase and fidelity susceptibility of the three-qubit lipkin-meshkov-glick ground state. J. Phys. A 43(35), 354026 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London. Ser. A 392(1802), 45–57 (1984)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.International Education Teachers SchoolChangchun Normal UniversityChangchunChina
  2. 2.School of Mathematics and PhysicsJiangsu University of TechnologyChangzhouChina

Personalised recommendations