Advertisement

Weak Measurement-Assisted Coherence Enhancement with Initial System-Environment Correlation

  • Xing Xiao
  • Yuxiang Lian
  • Yan-Ling LiEmail author
Article

Abstract

We study the coherence dynamics of a two-level atom interacting with a zero temperature reservoir beyond the initial factorization assumption. An exact analytic solution for the reduced dynamics of a two-level system in this model has been obtained. It is shown that the initial correlations can improve the coherence in both Markovian and non-Markovian regimes. Moreover, the performance of weak measurement and quantum measurement reversal can further enhance the coherence. Remarkably, the system’s coherence approach to a steady value in the long time limit. This phenomenon of “coherence trapping” originates from the fact that the quantum measurement reversal functions as a coherent driving and retrieves the coherence.

Keywords

Quantum coherence Weak measurement Initial system-environment correlation 

Notes

Acknowledgments

XX is supported by the Funds of the National NSFC under Grant No. 11805040 and No. 11665004 and the Natural Science Foundation of Jiangxi under Grant No. 20171BAB201019. YL Li is supported by the Program of Qingjiang Excellent Young Talents of Jiangxi University of Science and Technology.

References

  1. 1.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  2. 2.
    Bellomo, B., Franco, R.L., Compagno, G.: Phys. Rev. Lett. 99, 160502 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    An, J.H., Zhang, W.M.: Phys. Rev. A 76, 042127 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Phys. Rev. Lett. 100, 090503 (2008)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Xiao, X., Fang, M.F., Li, Y.L.: J. Phys. B: At. Mol. Opt. Phys. 43, 185505 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Li, Y.L., Xiao, X., Yao, Y.: Phys. Rev. A 91, 052105 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Buscemi, F.: Phys. Rev. Lett. 113, 140502 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Ban, M.: Phys. Rev. A 80, 064103 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Ban, M., Kitajima, S., Shibata, F.: Phys. Lett. A 375, 2283 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Laine, E.M., Piilo, J., Breuer, H.P.: EPL 92, 60010 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Rossatto, D.Z., Werlang, T., Castelano, L.K., Villas-Boas, C.J., Fanchini, F.F.: Phys. Rev. A 84, 042113 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Wißmann, S., Leggio, B., Breuer, H.P.: Phys. Rev. A 88, 022108 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Ringbauer, M., Wood, C.J., Modi, K., Gilchrist, A., White, A.G., Fedrizzi, A.: Phys. Rev. Lett. 114, 090402 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Chen, C.C., Goan, H.S.: Phys. Rev. A 93, 032113 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Smirne, A., Brivio, D., Cialdi, S., Vacchini, B., Paris, M.G.A.: Phys. Rev. A 84, 032112 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Zhang, Y.J., Zou, X.B., Xia, Y.J., Guo, G.G.: Phys. Rev. A 82, 022108 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Dajka, J., Łuczka, J.: Phys. Rev. A 82, 012341 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Zhang, YJ, Han, W, Xia, YJ, Yu, Y.M., Fan, H.: Sci. Rep. 5, 13359 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Bhattacharya, S., Banerjee, S., Pati, A.K.: Quantum Inf. Processing 17, 236 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    Katz, N., Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Phys. Rev. Lett. 101, 200401 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Sun, Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Phys. Rev. A 82, 052323 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Korotkov, A.N., Keane, K.: Phys. Rev. A 81, 040103 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Nat. Phys. 8, 117 (2012)CrossRefGoogle Scholar
  24. 24.
    Xiao, X., Li, Y.L.: Eur. Phys. J. D 67, 204 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Phys. Rev. A 93, 012307 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Man, Z.X., An, N.B., Xia, Y.J.: Ann. Phys. 349, 209 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Li, Y.L., Yao, Y., Xiao, X.: Laser Phys. Lett. 13, 125202 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Xiao, X., Yao, Y., Xie, Y.M., Wang, X.H., Li, Y.L.: Quantum Inf. Processing 15, 3881 (2016)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Spohn, H.: Rev. Mod. Phys. 52, 569 (1980)ADSCrossRefGoogle Scholar
  30. 30.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  32. 32.
    Guarnieri, G., Kolář, M., Filip, R.: Phys. Rev. Lett. 121, 070401 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and Electronic InformationGannan Normal UniversityGanzhouChina
  2. 2.School of Information EngineeringJiangxi University of Science and TechnologyGanzhouChina

Personalised recommendations