Single-Mode Squeezed Thermal States and Black Holes

  • Renu Dhayal
  • Meghna Rathore
  • K. K. VenkataratnamEmail author


By using single-mode squeezed thermal states prescription, we study the particle production due to thermal black hole. We analyze that thermal squeezing for a black hole can also be a possible mechanism in order to compute the variation of entropy and mass parameter. We also find a relation of Hawking’s temperature with thermal squeezing parameter.


Thermal vacuum states Black-holes Hawking temperature Entropy 



  1. 1.
    Takahashi, Y., Umezawa, H.: Thermo-field dynamics. Int. J. Mod. Phys. B 10, 1755–1805 (1996)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Barnett, S.M., Knight, P.L.: Thermo-field analysis of squeezing and statistical mixtures in quantum optics. J. Opt. Soc. Am. B2, 467 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    Barnett, S.M., Knight, P.L.: Squeezing in correlated quantum systems. J. Mod. Opt. 34, 841 (1987)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Barman, S., Hossain, G.M.: Consistent derivation of the Hawking effect for both non-extremal and extremal kerr black holes. Phys. Rev. D99, 065010 (2019)ADSGoogle Scholar
  6. 6.
    Kiefer, C., Muller, R., Singh, T.P.: Quantum gravity and non-unitarity in black hole evaporation. Mod. Phys. Lett. A 9, 2661 (1994)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bekenstin, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Page, D.N.: Is black-hole evaporation predictable. Phys.Rev.Lett. 301, 44 (1980)Google Scholar
  9. 9.
    Muller, R., Lousto, R.C.O.: Recovery of information from black hole radiation by considering stimulated emission. Phys. Rev. D 49, 1922 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    Giddings, S.W., Nelson, W.M.: Quantum emission from two-dimensional black holes. Phys. Rev D 46, 2486 (1992)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Saini, A., Stojkovic, D.: Gravitational collapse and Hawking-like radiation of a shell in Ads sapcetime. Phys. Rev. D97, 025020 (2018)ADSGoogle Scholar
  12. 12.
    Hawking, S.W.: The unpredictability of quantum gravity. Commun. Math. Phys. 87, 395 (1982)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460 (1976)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Page, D.N.: Time Dependence of Hawking Radiation Entropy. Phys. Rev. Lett. 71, 1291 (1993). [gr-qc/9305007]ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Saini, A., Stojkovic, D.: Radiation from a collapsing object is manifestly unitary. Phys. Rev. Lett. 114, 111301 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Gasperini, M., Giovanni, M.: Entropy production in the cosmological amplification of the vacuum fluctuations. Phys. Lett. B 30, 1334 (1993)Google Scholar
  17. 17.
    Gasperini, M., Giovanni, M.: Quantum squeezing and cosmological entropy production class. Quantum Grav. L 10, 133 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    Schumaker, B.L.: Quantum mechanical pure states with Gaussian wave functions. Phys. Rep. 135, 317 (1986)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Grishchuk, L.P., Sidorov, Y.V.: Squeezed quantum states of relic gravitons and primordial density fluctuations. Phys. Rev. D 42, 3413 (1993)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Caves, C.M.: Quantum mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981)ADSCrossRefGoogle Scholar
  21. 21.
    Matacz, A.L.: Coherent state representation of quantum fluctuations in the early Universe. Phys. Rev. D 49, 788 (1994)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Albrecht, A., et al.: Inflation and squeezed quantum states. Phys. Rev. D 50, 4807 (1994)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Suresh, P.K., Kuriakose, V.C., Joseph, K.B.: Squeezed state representation of the scalar field and vacuum fluctuations in the early universe. Int. J. Mod. Phys. D 6, 771 (1995)Google Scholar
  24. 24.
    Suresh, P.K., Kuriakose, V.C.: Squeezed states representation of quantum fluctuation and Semiclassical theory. Mod. Phys. Lett. A 13, 165 (1998)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Venkataratnam, K.K., Suresh, P.K.: Particle production of coherently oscillating non-classical inflaton in FRW universe. Int. J. Mod. Phys. D 13, 239 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Venkataratnam, K.K.: Behavior of non-classical inflaton in the FRW universe. Mod. Phys. Lett. A 28, 1350168 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Laplae, L., Mancini, F., Umezawa, H.: Vacuum in thermo field dynamics. Phys. Rep. C10, 151 (1974)ADSCrossRefGoogle Scholar
  28. 28.
    Takahashi, Y., Umezawa, H.: Higher order calculation in thermo field theory. Collect. Phenom. 2, 55 (1975)MathSciNetGoogle Scholar
  29. 29.
    Umezawa, H., Yamanaka, Y.: Micro, macro and thermal concepts in quantum field theory. Adv. Phys. 37, 531 (1988)ADSCrossRefGoogle Scholar
  30. 30.
    Fearm, H.M.J.: Representations of squeezed states with thermal noise. Collett J. M.d. Opt. 35, 553 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    Chaturvedi, S., et al.: Thermal counterparts of non-classical states in quantum optics. Phys. Rev. A. 41 (1990)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Lee, C.T.: Two-mode squeezed states with thermal noise. Phys. Rev. A42(7), 4193 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    Xu, X.-L., et al.: Quantum fluctuations of mesoscopic RLC circuit involving complicated coupling in thermal squeezed state. Phys. B 396, 199 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Barman, S., Hossain, G.M., Singha, C.: An exact derivation of the Hawking effect in canonical formulation. Phys. Rev. D97, 025016 (2018)ADSMathSciNetGoogle Scholar
  35. 35.
    Dominguez Tenoreiro, R., Quiors, M.: An Introduction to Cosmology and Particle Physics. World Scientific, Singapore (1988)CrossRefGoogle Scholar
  36. 36.
    Shapiro, S.L., Teulkolsky, S.A.: Black Holes, White Dwarfs and Neutron Stars. Wiley, Hoboken (1983)CrossRefGoogle Scholar
  37. 37.
    Gibbon, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D15, 2738 (1977)ADSMathSciNetGoogle Scholar
  38. 38.
    Saini, A., Stojkovic, D.: Hawking-like radiation and density matrix of an infalling observer during gravitational collapse. Phys. Rev. D94, 064028 (2016)ADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsMalaviya National Institute of Technology JaipurJaipurIndia

Personalised recommendations