A Novel Protocol for Bidirectional Controlled Quantum Teleportation of Two-Qubit States Via Seven-Qubit Entangled State in Noisy Environment

  • Ri-Gui Zhou
  • Chen QianEmail author
  • Ruiqing Xu


In this paper, a novel protocol of bidirectional controlled quantum teleportation (BCQT) via seven-qubit state is proposed. Where Alice and Bob, two legitimate users, can teleport two-qubit states to each other. In the whole process, users achieve the initial state based on preprocessing of quantum channel, Bell-state measurement (BSM), single-qubit measurement (SM), unitary operations and so on. The main superiority of the proposed protocol is more efficient compared with previous work. In addition, the proposed protocol is considered in noisy channel, it shows that the fidelities under amplitude-damping (AD) and phase-damping (PD) noise only rest with the amplitude parameter of the initial state and the decoherence noisy rate.


Bidirectional controlled quantum teleportation Seven-qubit entangled state Amplitude-damping noise Phase-damping noise 



This work is supported by the National Key R&D Plan under Grant No. 2018YFC1200200 and 2018YFC1200205, National Natural Science Foundation of China under Grant No. 61463016 and “Science and technology innovation action plan” of Shanghai in 2017 under Grant No. 17510740300. H.I. and National Natural Science Foundation of China under grant No.11404415.


  1. 1.
    Bennett, C.H., Brassard, G., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an Unkown quantum state via dual classical and {EPR} channels. Phys. Rev. Lett. 70, 1895–1899 (1993). Scholar
  2. 2.
    Zhou, R.G., Qian, C., Ian, H.: Bidirectional quantum teleportation of two-qubit state via four-qubit cluster state. Int. J. Theor. Phys. 58, 150–156 (2019). CrossRefzbMATHGoogle Scholar
  3. 3.
    Huang, S.M.: Bidirectional quantum controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55, 380–383 (2016). CrossRefzbMATHGoogle Scholar
  4. 4.
    Jiang, S.F.M.: Bidirectional and asymmetric controlled quantum information transmission via five-qubit Brown state. International. 56, 1530–1536 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53, 3780–3786 (2014). CrossRefzbMATHGoogle Scholar
  6. 6.
    Hu, T., Xue, K., Sun, C., Wang, G., Ren, H.: Quantum teleportation and dense coding via topological basis. Quantum Inf. Process. 12, 3369–3381 (2013). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013). MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, Y.: Bidirectional controlled quantum teleportation by using five-qubit entangled state. Int. J. Theor. Phys. 53, 1454–1458 (2014). CrossRefzbMATHGoogle Scholar
  9. 9.
    Tan, X., Zhang, X., Song, T.: Deterministic quantum teleportation of a particular six-qubit state using six-qubit cluster state. Int. J. Theor. Phys. 55, 155–160 (2016). CrossRefzbMATHGoogle Scholar
  10. 10.
    Zhou, R.-G., Xu, R., Lan, H.: Bidirectional quantum teleportation by using six-qubit cluster state. IEEE Access. 7, 1 (2019). CrossRefGoogle Scholar
  11. 11.
    Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697–2707 (2014). CrossRefzbMATHGoogle Scholar
  12. 12.
    Hong, W.Q.: Asymmetric bidirectional controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55, 384–387 (2016). CrossRefzbMATHGoogle Scholar
  13. 13.
    Sadeghi Zadeh, M.S., Houshmand, M., Aghababa, H.: Bidirectional teleportation of a two-qubit state by using eight-qubit entangled state as a Quantum Channel. Int. J. Theor. Phys. 56, 2101–2112 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chen, Y., Du, J., Liu, S., Wang, X.: Cyclic quantum teleportation. Quantum Inf. Process. 16, 1–9 (2017). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sang, Z.: Cyclic controlled teleportation by using a seven-qubit. Int. J. Theor. Phys. 57, 3835–3838 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an n -qubit quantum state. Quantum Inf. Process. 16, 1–19 (2017). MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sabir, D.J.M.: Efficient schemes for the quantum teleportation of a sub-class of tripartite entangled states. Quantum Inf. Process. 17, 1–11 (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Yang, G., Lian, B.W., Nie, M., Jin, J.: Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement. Chinese Phys. B. 26, (2017). ADSCrossRefGoogle Scholar
  19. 19.
    Hou, K., Bao, D.Q., Zhu, C.J., Yang, Y.P.: Controlled teleportation of an arbitrary two-qubit entanglement in noises environment. Quantum Inf. Process. 18, 1–19 (2019). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929–945 (2016). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sun, Y.R., Xu, G., Chen, X.B., Yang, Y., Yang, Y.X.: Asymmetric controlled bidirectional remote preparation of single- and three-qubit equatorial state in Noisy environment. IEEE Access. 7, 2811–2822 (2019). CrossRefGoogle Scholar
  22. 22.
    Sarvaghad-Moghaddam, M.: Bidirectional controlled quantum teleportation using eight-qubit quantum channel in noisy environments. Quantum Phys. (2018)Google Scholar
  23. 23.
    Liang, X.-T., Fan, H.-Y.: Entanglement-assisted classical capacities of some single qubit quantum Noisy channels. Mod. Phys. Lett. B. 16, 441–448 (2002). ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Search, H., Journals, C., Contact, A., Iopscience, M., Address, I.P.: Enhanced Multiparty Controlled QSDC Using GHZ State. 1007, (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Information EngineeringShanghai Maritime UniversityShanghaiChina
  2. 2.Research Center of Intelligent Information Processing and Quantum Intelligent ComputingShanghaiChina

Personalised recommendations